
MobilityFirst Protocol Stack

The MobilityFirst protocol stack captures the following core architectural principles:

 Applications should speak to high-level, abstract identifiers that are independent of

network location

 Applications should be given the ability to state routing preferences; that is, how routers

should treat the message when network-level decisions must be made. These

preferences help capture whether the traffic is real-time or delay-tolerant.

 A thin, possibly reliable, transport protocol is favored over today’s connection-oriented

protocols.

 Large blocks of the message, called chunks, are reliably transmitted in a hop-by-hop

fashion. A chunk is an autonomous unit of information from a routing perspective, and

is labeled by a MobilityFirst GUID-based header.

MobilityFirst maintains traditional layering, with the exception of an optional end-to-end

security layer that is given the role of performing GUID-based security operations.

The following table illustrates the labels and data units understood by each of the layers.

Layers of the MobilityFirst stack:

Layer Data Units Understood Labels Understood

MF Application Messages GUIDs

MF E2E Security Messages GUIDs

MF Transport Messages & Chunks GUIDs

MF Routing Chunks GUIDs, Net Addresses & MACs

MF Link Chunks & Frames MACs

MF Physical Frames MACs

The following three layers are present on all MobilityFirst clients, and may or may not be

present on MobilityFirst routers: (1) application, (2) E2E security, and (3) transport.

The application layer understands only messages destined to GUIDs. Therefore, the traditional

socket interface can be replaced by one that includes, at minimum, a sendTo operation where

the destination is a GUID. Human-readable names, such as “Jon’s laptop” or “ESPN’s highlight

video” will be mapped to GUIDs via application-layer services for context, content, and devices.

The E2E security layer is responsible for performing all GUID-based security services. This layer

stores the private keys to all GUIDs owned by the device, and can sign messages on behalf of

applications. Furthermore, it can encrypt messages for a foreign GUID using the destination

GUID provided by the application. Finally, it can verify signed messages destined for a local

application, as well as decrypt messages send to one of its GUIDs. This layer may also be

responsible for storing and verifying certificates via a collected set of root certificate

authorities. In this case, it takes some of the functionality from today’s browser-based, TLS

security.

The transport layer provides a socket interface for applications and the security layer to access

the lower-level network layers. This layer is responsible for taking a message and breaking it

into large chunks, reliably transmitting the chunks (if the service ID desires this), and re-

compiling the chunks into a message at the destination.

The following diagram illustrates data traversing the MobilityFirst protocol stack:

Data traversing the MobilityFirst stack:

The lower three layers are present on all MobilityFirst routers: (1) network, (2) link, and (3)

physical.

The network layer is responsible for taking a chunk and adding a next hop field to it that the link

layer can understand. Under normal operation, a GNRS client process will run at this layer, taking

a GUID and making a GNRS query on that GUID, in hopes of receiving a list of NAs corresponding to that

GUID. It may also receive a list of local addresses (LAs) that provide the local address of the GUID which

is understandable by the intra-domain routing protocol. In the event that either the GNRS is

inaccessible, or the destination GUID is inaccessible, or the local GNRS returns a LA that is not part of the

intra-domain forwarding table, the routing protocol can attempt to directly route on the GUID itself.

This is usually the case in DTN environments. Either via the LA forwarding table or the GUID forwarding

table, the router will append a next hop MAC address to the chunk and pass it to the link layer. Note

that the routing layer has direct access to a large storage buffer, and can make the decision to

temporarily store chunks in this buffer, according to the rules of the intra-domain routing protocol. It

should, however, respect the application preferences set in the SID regarding storing chunks.

The link layer is responsible for reliably transferring a chunk by breaking it into smaller frames and

transferring them to the next hop. The next hop’s link layer must completely and reliably obtain the

chunk before it informs the routing layer that it has received the chunk. If the chunk, for whatever

reason, cannot be transmitted, then the sending side link layer must give the chunk back to the routing

layer, who can then either re-route or store the chunk if need be.

Finally, the MF physical layer is responsible for delivering a single frame to the next hop.

The following table provides an idea of the interfaces between the layers:

Interface for layers:

Layer Going down the stack -
Called from above

Going up the stack -
Called from below

MF Application N/A giveMessageToApp(Message, from GUID)

MF E2E Security sendSecMessage(Message, to GUID,
sec)
getSecContent(content GUID, sec)

giveSecMessageToApp(Message, from GUID)

MF Transport sendMessage(Message, toGUID)
getContent(content GUID)

giveChunkToTransport(Chunk, from GUID)

MF Routing sendChunk(Chunk, to GUID) giveChunkToRouting(Chunk, from MAC)

MF Link sendChunk(Chunk, next hop MAC) giveFrameToLink(Frame, from MAC)

MF Physical sendFrame(Frame, next hop MAC) N/A

Note that the service ID (SID) will specify whether or not the application desires any part of the message

to be stored, as well as whether it is real-time traffic or not. This directive impacts the transport,

routing, and link layers. The transport layer will not reliably transmit real-time traffic, and will create

much smaller chunk sizes for it. The routing layer will follow the storage directives when making routing

decisions. The link layer may attempt to reliably transmit real-time data, but will give up more quickly.

