
Global Name Resolution Services for the Mobile Internet
using a Distributed In-Network Hash Table (DIHT) ∗

Tam Vu, Akash Baid, Yanyong Zhang, Marco Gruteser, Dipankar Raychaudhuri

WINLAB, Rutgers University
{tamvu, baid, yyzhang, gruteser, ray}@winlab.rutgers.edu

ABSTRACT
This paper presents the design and evaluation of the distributed in-
network hash table (DIHT) approach for realizing fast global name
resolution services for the future mobile Internet. The proposed
global name resolution service (GNRS) supports mobility at-scale
in the future Internet in which a clean separation of the “name" of
a network object from its “address" or point of attachment takes
place. The GNRS is intended as a fast network-level service which
can be queried by both end-points and in-network routers in order
to obtain bindings between a GUID (globally unique identifier for
the name) and the current routable network address (or addresses).
Our approach distributes these name-to-address mappings amongst
Internet ASs by directly hashing a name to produce an IP address
announced by the AS which stores the mapping for that name. This
in-network single-hop hashing technique leverages the IP reacha-
bility information which is readily available at the network layer
and achieves low lookups latencies without any DHT maintenance
overheads. The proposed DIHT technique is described in detail
and specific technical problems such as address space fragmen-
tation and reduction of latency through replication are addressed.
Evaluation results are presented from a large-scale discrete event
simulation of the Internet with∼26,000 autonomous systems us-
ing real-world traffic traces from the DIMES repository. The re-
sults show that the proposed DIHT method evenly balances storage
load and achieves lookup latencies with a mean value of∼50 ms
and 95th percentile value of∼100 ms, considered adequate for the
mobility scenarios under consideration.

1. INTRODUCTION
This paper introduces a distributed in-network hash table (DIHT)

approach to realize a global scale name resolution service for mo-
bility support in the future Internet. Large-scale in-network global
name resolution services under consideration here are motivated by
the dramatic growth of mobile devices and applications on the In-
ternet. There are over 6 billion cellular devices in use today with
a significant fraction of these providing data services in addition to
voice and text. For example, a white paper from Cisco [5] predicts
a cross-over of mobile Internet traffic volumes over that of fixed
hosts by the year 2015. Current approaches for handling mobility
involve a combination of cellular network protocols (e.g. 3GPP) [2]
and mobile IP [11] but it is widely recognized that these solutions
have serious limitations in terms of scale and service flexibility.

∗Research supported by NSF Future Internet Architecture (FIA)
grant CNS-1040735

This has motivated a number of "clean-slate" future Internet ar-
chitecture projects aimed at investigating fundamentally new ap-
proaches to meeting anticipated needs such as large-scale mobility,
security/privacy or content support [23].

Name assignment services

Mobile

Device’s

Name

Assignment

Service

Sensor

Name

Assignment

Service

Content

Name

Assignment

Service

...

Video

Service

Routing based on

network address (e.g IP)

Global Naming Resolution Service (GNRS)

GUID => {NA1,NA2….}

Sue’s Laptop

Requesting

 Video

Nam
e re

quest

GUID
=2

Name requestGUID=1

get(GUID=1)

LEGEND:

GUID to NA lookupGlobal routing service (e.g. BGP)

NA2
NA1

NA GUID

Figure 1: Global name resolution service concept supporting
separation of network names and addresses

The MobilityFirst project [20] represents one of these architectural
efforts with a particular focus on supporting large-scale, efficient
and robust mobility services in the future Internet. The Mobil-
ityFirst architecture (which is still evolving) is based on a clean
separation between the “names" of end-users or other network-
connected objects, and their routable addresses or locators. Sep-
aration of names and addresses makes it possible for mobile de-
vices to have a permanent, location independent name or glob-
ally unique identifier (GUID) which can then be mapped to a set
of routable network addresses (NA) corresponding to the current
point(s) of attachment. This concept of separating names from ad-
dresses has been proposed in earlier work, such as [8, 3] but is usu-
ally viewed as an overlay service above the network similar in spirit
to DNS. The MobilityFirst architecture aims to integrate a global
name resolution service (GNRS) as a basic network-layer service
which can be efficiently accessed both by end-user devices and in-
network routers, base stations and access points. This concept is
illustrated in Figure 1 which shows the layering of functionality in
the proposed MobilityFirst architecture. In this approach, a human-
readable name such as ”Sue’s laptop" is mapped to a GUID through
one of many possible application level services deployed by the
network provider or independent third-party providers. The GUID
is then assigned to the mobile device (or other network-connected
object) and entered into the network-level GNRS service shown in

the figure. The GNRS is a distributed network service which is re-
sponsible for maintaining the current bindings between the GUID
and network address(es) (NA’s). Mobile devices (or routers at their
point of attachment) update the GNRS with current NA values re-
sulting in a table entry such as<GUID: NA1, NA2, NA3, optional
properties>. The technical problem addressed here is that of re-
alizing a scalable GNRS service with∼10 Billion GUID entries
(i.e. network-attached objects) with lookup latencies fast enough
to support anticipated mobility speeds and application usage pat-
terns. We emphasize that since the GNRS can also be queried by
the in-network routers for dynamic GUID:NA resolution for in-
transit packets, low latency in the query response procedure is a
critical requirement for the design.

Our approach addresses this problem through an in-network single-
hop hashing technique that leverages the IP reachability informa-
tion readily available at the network layer. It distributes the GUID
to address mappings amongst Internet ASs. To look up a mapping,
one can directly hash the GUID to produce an IP address of the
AS that stores the mapping. Thus, this technique can achieve low
lookup latency and minimum maintenance overhead without the
need for more churn-tolerant DHTs. While the following sections
describe this service in the context of IP, it is flexible enough so
that it can also be used with other identifier schemes and address-
ing structures.

2. SINGLE HOP IN-NETWORK HASHING
The DIHT design is motivated by two key insights - (a) Central-

ized overlay resolution services similar to DNS that relies on exten-
sive caching cannot deal with fast updates which is a basic require-
ment for the use of name/address separation. In addition, to store
the mappings of billions of hosts and handle their updates/queries,
much larger dedicated infrastructure support than the current DNS
would be required; (b) Traditional DHT schemes such as Chord [26],
CAN [24], etc. as well as their optimized variations such as those
described in [21, 12], etc. aim to solve the problems with cen-
tralized architecture but invariably introduce a fundamental trade-
off between service latency and table-size/maintenance overhead.
We argue that minimization of both these parameters - latency and
memory as well as network-traffic - is critically essential for name/
address separation to yield any substantial benefit over existing
schemes.

The way we meet these scalability requirements is by leveraging
the globally available BGP reachability information to distribute
the GUID:NA mappings among all the participating ASs in the In-
ternet. With our scheme, every GUID is directly hashed to an exist-
ing IP address and its mapping is stored in the AS that announces
that IP’s reachability using BGP updates. This results in the resolu-
tion of all query/updates in exactly one overlap hop without requir-
ing any table maintenance overheads over what is already available
through BGP. To illustrate this technique, next we present the se-
quence of required operations assuming the use of the existing IP
address space but the same technique can be realized to work with
any future addressing scheme such as IPv6, AIP [3] or HIP [22].

In order to store the mapping of its GUID:NA, a hostX forms a
GUID insert messageand sends it to the border gateway router of
the AS that it belongs to. The border gateway applies a predefined
consistent hash function on the GUID and maps it to a valueIPx

in the IP space. Using the IP prefix announcements from its BGP
table, the border gateway sends the mapping to be stored at that
AS which announced the ownership forIPx. A second hostY , in
the same or a different AS who wishes to find the mapping entry
for X, sends aGUID query messageto its border gateway which
then follows a similar hashing scheme to reach the AS maintain-

ing the GUID:NA mapping forX. Here we assume that all ASs
have the same view of the prefix announcements and delay the dis-
cussion on dealing with prefix aggregation, misconfiguration and
route hijacking to Section 2.3. As an enhancement over this base-
line scheme, the border gateway router of hostX usesK different
hash functions and stores the GUID:NA mapping forX atK differ-
ent places. The benefits from this replication scheme are discussed
in Section 2.2 while Figure 2 illustrates an example of the update
and query process withK = 3.

We note that in contrast to traditional DHT schemes, this ap-
proach assumes the participation of network routers in the DIHT
scheme in terms of responding to update and query messages and
storing the relevant GUID:NA table entries. DIHT does not re-
quire any additional table maintenance overhead since we leverage
the IP reachability information already made available by the BGP
routing protocol. Since the hashing is done locally by the client’s
border gateway, inserts and queries are fast and do not consume
any network bandwidth. In addition, it is noted that unlike many
recent proposals [9, 15, 14, 19], we do not distribute the mapping
table based on assumptions of aggregability of the GUID space.
Thus, our scheme is suitable for flat address spaces, which is the
proposed design in the MobilityFirst Architecture as well as other
proposals such as AIP [3] and HIP [22]. In the next sections, we
discuss the implementation challenges involved in our scheme and
describe suitable modifications to the baseline technique to over-
come them.

44.32.1.1

8.8.8.8

User A (GUID = 10)

Global Prefix Table

Prefix AS #
Next-hop

address

8/8 1 8.8.8.8

AS 1

AS 55

67.10.1.1

40.3.22.4

Update

GUID=10

 44.32.1.153h1()

h2()

h3()

67.10.12.1

8.12.2.3

Query (GUID =10)

67.10/16 55 67.10.1.1

44/8 101 44.32.1.1

AS 101

User B

Wants to contact A

Resolver/Router

Update Flow

Query Flow

LEGEND:

GUID = 10

 44.32.1.153h1()

h2()

h3()

67.10.12.1

8.12.2.3

GUID = 10

K=3
K

=1
K=2

Figure 2: Proposed DIHT method with K=3 independent hash
functions

2.1 IP Hole Effect
The key advantage of our approach compared to existing so-

lutions is the use of direct hashing from name to the address of

the storage location leading to resolution in a single overlay-hop.
While this results in low latency lookups and updates, the frag-
mented allocation of the address space presents a potential prob-
lem. Continuing with our insert-query example from Section 2, the
hashed resultIPx could fall into an IP address space that no AS
announces in the global default free zone. To illustrate the extent
of this problem, we analyze the current IP assignment status. At
present, while there are232 possible IP addresses for IPv4, only
86% of them are allocated to various entities [4], the rest being re-
served for different purposes including multicast, limited multicast,
loopback address and broadcast. Among those allocated address,
only 63.7% of them are announced by the ASs, presumably be-
cause they do not require reachability to the rest of their IP space.
This leads to an overall 55% announcement over the possible range
of IPv4 addresses which results in a 45% chance that a randomly
hashedIPx will belong to the set of unannounced addresses. We
address the IP hole problem by making the border gateway rehash
the resultingIPx values that fall into an IP hole. This process is
repeated up toM times, following which if the hashed IP still falls
in the unannounced block, we pick the announced IP address that
has the minimumIP distanceto the current hashed value. Given
two k-bit addresses, A and B, their IP distance is defined as:

IP_distance[A,B] =

k−1
X

i=0

|Ai −Bi| ∗ 2
i

We further define the IP distance between an address and an ad-
dress block as the minimum IP distance between that address to
all address in the block. We note that assigning mapping responsi-
bility through IP distance introduces ‘unfairness’ since an AS that
announces an IP which is adjacent to a large set of reserved ad-
dresses would have to store a large number of mappings. However,
usingM = 10 rehashes, reduces the probability of staying inside
the IP hole to 0.009 (using the current IP assignment status), thus
resulting in very few cases which require this indirect method of IP
distance based insert/lookup. Algorithm 1, which summarizes the
steps taken by the gateway to deal with the IP hole problem guar-
antees that a valid hashed result is always found. Since hashing,
rehashing and prefix matching processes are done locally by the
border gateway, these operations introduce very little delay and do
not add any traffic overhead to the network. Also, we note that the
solution described above is specific for the current IP address space
but a similar scheme can be used for any other future addressing
scheme.

2.2 Replication
To enhance DIHT’s reliability and further reduce access laten-

cies, we increase the number of resolvers responsible for each map-
ping entry by having the border gateways employK parallel hash
functions at the time of update and query. During insertion or up-
date, the border gateway applies Algorithm 1K times using in-
dependent hash functions on each iteration to obtainK valid ad-
dresses. The mapping is stored in all theK ASs responsible for
the resulting addresses, thus creating storage replicas for each en-
try in the mapping table. To lookup a mapping entry, the gateway
router selects the closest AS (in terms of path cost obtained from
the BGP table) among theK ASs that maintain the required map-
ping. This replicating technique leads to two important benefits -
reduced lookup latencies and increased resilience to random fail-
ures. Firstly, with randomized replication, a gateway is more likely
to find a nearby AS which stores the required mapping. We show
in Section 3 that asK increases from 1 to 5, the 95th percentile
lookup latency reduces from 202ms to 91ms. Secondly, as the num-
ber of replicas increases, the resilience of the system is also greatly

Algorithm 1: Hashing GUID to address space

input : GUID - theGUID to be hashed
M - maximum number of rehashing

output: An address guaranteed to be found in prefix table

1 number_of_tries← 0;

2 result← hash(GUID);

3 while (number_of_tries < M) do
4 if Longest_Prefix_Matching(result) > 0 then
5 return result; //ended here if found

6 // no prefix was found
7 result← hash(result);

8 number_of_tries← number_of_tries + 1;

9 //No match found after M hashes
10 min_distance← 232;
11 foreach prefixi in the Prefix Tabledo
12 if IP_distance(result,prefixi) < min_distance then
13 min_distance← IP_distance(result to the prefix);

14 return An address in the prefix that hasmin_distance

improved as the probability of two distant routers failing simulta-
neously is very low. Figure 2 illustrates an example of the update
and query process withK = 3. Finally, we note that this method
interleaves the mapping replicas between ASs in contrast to exact
replication of all the mappings from one AS to another, thus adding
resilience random failures.

The improvement in latency and reliability, however, comes with
an increased storage requirement and enhanced complexity in the
update process. A careful analysis based on the bounds on require-
ments and capabilities of the network is thus required to select an
appropriate value forK.

2.3 Network Dynamism
BGP Churn: Changes in the prefixes announced occurs when an
AS withdraws a previously announced prefix or announces a new
prefix. Since a change in the prefix announcements directly influ-
ences our mapping lookup scheme, we analyze its potential effects.
A long term study of the BGP churn evolution [7] shows that a
major reason for churn in the BGP tables is router configuration
mistakes or other anomalies. The actual rate of prefix announce-
ment and withdrawal is fairly small with new prefix announcements
dominating prefix withdrawals. When an AS withdraws a certain
prefix, all its stored mappings that correspond to the withdrawn pre-
fix will neither be queried nor updated since any new query/update
processing will be based on the current announcement status. This
results in what we callorphan mappings. If an AS continues to
store such mappings its storage memory is wasted, thus we pro-
pose the following planned withdrawal protocol: An AST1, be-
fore withdrawing a prefix announcement, uses Algorithm 1 for each
GUID that corresponds to the prefix being withdrawn and finds a
new storage placeT2 for that GUID. While doing so, it excludes
its own addresses and thus is guaranteed to find a new AS for each
GUID. T1 then sendsGUID insert messagesto the new ASs corre-
sponding to each affected GUID and finally deletes its own copy of
the mappings. Note that this process does not involve the original
publisher of the GUID to be involved, thus not requiring it to follow
any periodic consistency check protocol.

New prefix announcements can similarly result in orphan map-
pings since any prior hashes resulting in those IP addresses would
follow the IP hole procedures and rehash to reach a different AS.
In addition, this could result in an AS getting a query for a GUID

whose mapping is not stored in its storage table. To solve this prob-
lem, an AS can adhere to the following protocol to correct the map-
ping errors in the system: On receipt of a GUID query which cannot
be found in its mapping table, an AS follows Algorithm 1 (again by
excluding itself) and finds the AS that was storing the mapping in
the absence of the new announced prefix. It then contacts that AS
sending a specialGUID migration messagethrough which the cor-
responding mapping is transfered from the prior AS to its rightful
AS. We note that subsequent queries/updates for this GUID follows
the normal procedure without incurring this additional overhead.
We also emphasize that using these simple table rectification pro-
tocols guarantee that orphan mappings are promptly removed from
the system and table sizes don’t inflate over time.

Router Failure: An AS can lose part or whole of its mapping
storage due to router failure or intentional maintenance. Dealing
with these anomalies is straightforward by leveraging the replica-
tion technique explained in Section 2.2. Every mapping query by
a host or router is accompanied by a timeout procedure in case the
chosen AS does not respond within a stipulated time. Following a
timeout, the host or router can select the next closest AS that stores
the mapping required. To further improve resilience and reliability
of the mapping, a query can be sent in parallel toP different ASs,
with P ≤ K.

3. EVALUATION
In this section, we first present qualitative arguments to estimate

storage requirements and traffic overhead, followed by results from
a large-scale event-based simulation to study the query latency and
load distribution in our scheme. We show that consistent hash-
ing proportionally distributes the GUID:NA mapping such that the
storage at any particular AS does not exceed feasible limits. We
also find that the 95th percentile query latency is bounded below
100 ms using modest amount of replication, thus meeting the goal
of fast resolution.

To analyze the storage requirements in absence of specifications
about the GUID/NA lengths and related headers, we make the fol-
lowing assumptions. We assume flat GUIDs of length 160 bit, each
associated with a maximum of 5 NAs (accounting for multi-homes
devices) of length 32 bits each. 32 bits of additional overhead per
mapping entry is assumed which could include type of service, pri-
ority and other side information. Each mapping entry thus has a
size of 160 + 32x5 + 32 = 352 bits. We assume a total of 5 Billion
GUIDs, roughly equal to the present number of mobile devices,
and a replication factor ofK = 5. Based on the average pre-
fix announcement by individual ASs as determined from a current
snapshot of the BGP table [4], the storage requirements per AS,
assuming roughly proportional distribution, is only 173 Mbits.

The update traffic overhead is also a key parameter of interest in
ensuring scalability. The DIHT technique reduces the traffic over-
head in comparison to other mapping schemes by: (a) Ensuring
single overlay-hop path to storage location, (b) Not adding any ta-
ble maintenance traffic as required in DHT based schemes. Using
a broad estimate of 50% of the 5 Billion GUIDs being those of
mobile hosts which update their GUID:NA mapping at an average
rate of 100 updates/day, the world-wide combined update traffic
would be∼5 Gb/s, a minute fraction of the overall Internet traffic
of ∼ 50x106 Gb/s as of 2010 [5].

Next we describe our event-based simulation setup and present
results which characterize the critical parameters of query latency
and load distribution for our scheme.

3.1 Simulation setup

3.1.1 Event-based Simulator Architecture
The discrete-event simulator consists of∼26000 nodes, each of

which emulates the relevant operations of an individual AS. The
connectivity graph of the network, inter-AS and intra-AS connec-
tivity latencies, and the announced IP prefix list are derived from
measurement driven data as described in Section 3.1.2. Three types
of event: GUID inserts, GUID updates and GUID lookups are pre-
generated and organized into a global queue. The global queue
guarantees that the order of events on each run are the same and will
lead to the same outcome. The event controller processes events in
the global queue in sequential order following the sequence of op-
erations outlined in 2 to process each kind of event. For each query
event, the total latency is computed and stored as a data point. The
simulation concludes with data gathering from each AS in terms of
number of GUIDs stored and average query/update rates.1

3.1.2 Data Sources
We use the AS-level topology of the current Internet as our net-

work model by extracting the following real-measurement data from
the DIMES database [25]: (i) Connectivity graph containing 26,424
ASs and 90,267 direct links between them, (ii) Average end-to-end
latencies between each pair of AS and within each AS. The DIMES
database provides end-to-end median latency for about 9 million
pairs of hosts which are either within the same AS or in different
ASs. From this dataset, we extract the average inter-AS and intra-
AS latency since we only work with a AS-level network topology
in our simulation. Due to the inherent incompleteness of real-trace
data, intra-AS latency numbers are not available for about 6% of the
ASs that are involved in the storage or transit of the mapping data.
For these ASs, we use the median value (3.5 ms) of the set of avail-
able intra-AS latencies as a working solution. We note that there
are other measurement driven sources for AS topology data, for ex-
ample [18] and [6], but we found DIMES to have a more complete
view of the AS-level graph compared to any other database. For
route selection, we use minimum latency paths between each pair
of source and destination AS and make a conscious decision of not
employing one of many path inference schemes such as [10, 27]
that aim at also incorporating estimated policies at each AS. The
dynamic nature of AS relationships, multi-homed networks and
hidden/misconfigured policies prevalent in the Internet limits the
accuracy of such schemes, introducing an uncharacterizable source
of error in the results. We chose to present our results with the
caveat of AS policy ignorance instead of adding unknown infer-
ence errors.

Since our scheme allocates GUIDs to ASs according to the prefix
announcements, we use a complete list of IP prefixes advertised in
the Internet default free zone, as seen by APNIC’s router at DIX-
IE in Tokyo, Japan [4]. This dataset consists of roughly 330,000
prefixes spanning close to 52% of the 32 bit IP address space which
is consistent with recent estimates [7] about the size of the prefix
tables in DFZ routers. We confirm our results with two other prefix
tables taken from BGP routers in the continental USA and Europe
respectively and observe similar trends.

To discard any location bias and to incorporate the global scale of
operation, we use another dataset from DIMES to characterize the
distribution of the source of GUID insert and query. Each GUID
in our simulation is originated from a randomly picked source AS,
where the probability of choosing a certain AS is weighted in pro-
portion to the number of end-nodes found in that AS as per the
DIMES database. The end-result emulates a real deployment sce-
nario in which more populated areas (characterized by high num-

1The source code for our simulation is made available at [1]

K Round Trip Query Latency(ms)
Mean Median 95th percentile

1 77.8 57.9 202.0
5 51.3 41.7 90.9

Table 1: Query Latency Statistics for K = 1, 5

ber of IP end-nodes) will generate more GUID queries compared
to less populated areas. We note that the nature of trace collection
employed by DIMES might introduce a bias due to non-uniformity
of vantage point distribution (though shown to be small), however
we do not take this into account in our simulation.

3.2 Results
We present two sets of results that characterize the query latency

and the load distribution of our scheme respectively.

3.2.1 Query Latency
The most critical performance measure of a mapping scheme is

the delay incurred between making a query and receiving a reply
from the appropriate mapping source. Low query latency is a key
requirement for efficient mobility support using the name and lo-
cator split mechanism. We characterize the query latency of our
scheme by running a set of simulations as per Section 3.1 with
100K GUID inserts and queries and varying values for the repli-
cation factorK, from 1 to 5. By repeated trials, we verified that the
latency averages converge with 100K data points and further in-
creasing the number of queries does not provide any additional in-
sights. Figure 3 plots the Cumulative Distribution Function (CDF)
of the round trip query latency for different values ofK. The effect
of increasingK, as described in Section 2.2 can be clearly seen
with the leftward shift of the CDF curve as we increase the value
of K. In particular, the mean, median and95th percentile query la-
tencies ofK = 1 andK = 5 cases are tabulated in Table 1 which
shows a marked decrease in the tail of the latency distribution. The
low query latency values and a relatively thin tail distribution for
K = 5 validates the effectiveness of our scheme and shows that it
can be used even under very stringent latency requirements.

10 100 1,00020 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round Trip Query Latency in milliseconds (log scale)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

K = 1
K = 2
K = 3
K = 4
K = 5

K = 5,
95th Percentile

at 91 ms

K = 1,
95th Percentile

at 202 ms

Figure 3: Empirical CDF of the round trip query latency

3.2.2 Load Distribution
To ensure that the scheme scales and no particular AS is assigned

a disproportionally large number of GUIDs, fairness in load distri-
bution is an important factor. Using the current IP addresses as an
example of the NA space, we show that despite the heavily frag-
mented allocation of this space, our scheme exhibits fairness of

GUID assignments. We measure fairness in terms of the Normal-
ized Load Ratio (NLR) at each AS, which is defined as the ratio of
GUID percentage assigned to that AS over the IP percentage ad-
vertised by that AS. For example if an AS announces a/8 prefix,
corresponding to 0.39% of the 32 bit IP space and gets assigned
20,000 out of a total of 1 Million GUIDs i.e 2% of GUIDs, then its
normalized load would be 2/0.39≃5.

To evaluate the load distribution, we run a second experiment
with 10 Million GUID inserts and a fixed value ofK = 1. A higher
number of inserts provide sufficient number of data points for aver-
aging which is required to cover the wide variability in the number
and size of IP prefix announcements. Simulations with higher val-
ues ofK show similar trends and we only present theK = 1 case
for clarity. Figure 4 shows the CDF of the normalized load over all
the ASs in the network for this simulation. Close to 70% of the ASs
lie in the flat vertical portion of the curve, indicating a fair assign-
ment with narrow tails. The median NLR value of∼2 is expected
since in addition to its fair share of GUIDs, each AS is also allo-
cated a portion of the GUIDs that fall in the IP holes as described
in Section 2.1. We note that as we further increase the number of
inserts, the tail distributions become narrower and the distribution
of NLR values asymptotically converges to a fixed value.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Load Ratio per AS

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

Figure 4: Empirical CDF of normalized Load per AS

4. RELATED WORK
Being a critical component of locator/identifier separation schemes,

various architectures for mapping identifiers to locators have been
proposed and studied. Most of the early mapping schemes [9, 15,
14, 19] assumed aggregatable identifier spaces and proposed ideas
based on that vantage point. However, this assumption is too re-
strictive making such schemes not applicable to many recent main-
stream proposals such as HIP [22], AIP [3] and MobilityFirst [20]
which propose flat identifiers. Our approach, in contrast, targets
a flexible resolution service by not making any assumptions about
identifier hierarchy or locator structure.

There are some recent mapping architecture proposals that in-
corporate flat identifier space such as DHT-MAP [17], SLIMS [13].
However these approaches either incur high lookup latency, making
it not applicable to highly mobile environment, or prohibitive man-
agement overhead which limits scalability. For example, the DHT
based scheme in [17] can entail up to 8 logical hops introducing an
average latency of about 900ms as per their assumptions.

In contrast, our scheme aims for much lower latencies by em-
ploying the one-hop hashing approach and ensures minimum man-

agement overhead for feasible deployment on a global scale. We
argue that making use of network entities and the IP reachability in-
formation already available through the underlying routing infras-
tructure provides a practical and scalable approach to realize map-
ping resolvers. Reference [16] uses the similar in-network hashing
scheme to target the different but related problem of name-based
routing.

This work also focuses on a global-scale simulation to validate
the design, which has been neglected in most of the prior works ref-
erenced above. Reference [14] is a recent exception which presents
a trace based simulation using the iPlane dataset [18]. Our simu-
lation approach is more realistic than that of [14] on two counts:
(a) We use a larger dataset from DIMES [25] to extract AS level
connectivity and latency information. The DIMES dataset is based
on measurements from∼1000 vantage points compared to∼200
for iPlane, resulting in information for about twice the number
of ASs as compared to iPlane; (b) To generate resolution lookup
events, [14] uses DNS lookup traces from two particular source
locations which introduces a significant locality bias in their re-
sults. In contrast, we globally distribute lookup source locations
by weighting the chances of choosing a particular source location
(source AS) in proportion to the available data on number of end
nodes near that location. The basic intuition here is to mimic re-
alistic deployment where more lookup requests will be generated
from more densely populated areas.

5. CONCLUDING REMARKS
In this paper, we presented the motivations, design and eval-

uation of DIHT, a scheme for low latency, scalable name reso-
lution service for future mobile Internet. DIHT distributes name
to address mappings amongst Internet routers using an in-network
single-hop hashing technique which derives the address of the stor-
age router directly from the name. In contrast to other DHT-based
techniques, DIHT does not require any table maintenance over-
head since we use the IP reachability information already available
through the inter-domain routing protocol. In addition, DIHT sup-
ports arbitrary name and address structures making it more widely
applicable than most prior techniques. Through a large-scale discrete-
event simulation, we show that the proposed DIHT method achieves
low latencies with a mean value of∼50 ms and 95th percentile
value of∼100 ms and good storage distribution among participat-
ing routers.

The main technique of leveraging the routing information for
mapping distribution can be used to realize other variations of the
distribution technique. For example, GUIDs can be directly hashed
to AS numbers or allocation sizes could be varied based on param-
eters that reflect the economic incentives of the ASs. In the context
of mobility support in the Internet, the benefits offered by caching-
based schemes like the DNS come with a heavy cost on increased
update complexity. We plan to extend the scope of this work by
studying a feasible in-network caching scheme that builds on top
of the DIHT scheme. Since our scheme interacts with the hosts, the
inter-domain routing protocol and the Internet routers, security is a
critical requirement at each level. The MobilityFirst project [20],
takes a holistic approach towards self certification based security,
which can tie well into the relevant aspects of our scheme. Our
future work plan also includes incorporating the transient effects
of BGP updates, misconfigurations and router failures in our simu-
lation framework and studying the effects of various measurement
biases on our results.

6. ACKNOWLEDGEMENTS
We would like to thank Jennifer Rexford for her insightful com-

ments. We also thank Noa Zilberman and Udi Weinsberg from
DIMES for help with the latency dataset. This work has been
supported by NSF Future Internet Architecture (FIA) grant CNS-
1040735

7. REFERENCES
[1] DIHT Simulation source code - MobilityFirst Project.

http://www.winlab.rutgers.edu/ tamvu/NRS/sourceCode/, 2011.
[2] 3GPP: Mobile Broadband Standard. http://www.3gpp.org/.
[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Accountable Internet Protocol (AIP). InProc. ACM SIGCOMM,
Aug. 2008.

[4] BGP Routing Table Analysis - DIX-IE Data. http://thyme.apnic.net/current/.
[5] Cisco: Global Mobile Data Traffic Forecast Update, 2009-2014,.
[6] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov. Internet mapping:

From art to science. InProceedings of the 2009 Cybersecurity Applications &
Technology Conference for Homeland Security, pages 205–211, 2009.

[7] A. Elmokashfi, A. Kvalbein, and C. Dovrolis. BGP Churn Evolution:a
Perspective from the Core.2010 Proceedings IEEE INFOCOM, pages 1–9,
2010.

[8] D. Farinacci, D. Fuller, D. Oran, and D. Meyer.Locator/ID separation protocol
(LISP). IETF Internet Draft, draft-farinacci-lisp-12.txt, Sep. 2009.

[9] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis.LISP Alternative Topology
(LISP+ALT). IETF Internet Draft, draft-ietf-lisp-alt-06.txt, March 2011.

[10] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM Trans. Netw., 9:733–745, December 2001.

[11] S. Gundavelli, K. Leung, V. Devarapalli, C. K., and P. B.Proxy Mobile IPv6.
IETF Internet Standard, RFC 5213, Aug. 2008.

[12] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer
overlays. InProceedings of the 9th conference on Hot Topics in Operating
Systems - Volume 9, pages 2–2, Berkeley, CA, USA, 2003. USENIX
Association.

[13] J. Hou, Y. Liu, and Z. Gong. Silms: A scalable and secure identifier-to-locator
mapping service system design for future internet.Computer Science and
Engineering, International Workshop on, 2:54–58, 2009.

[14] L. Jakab, A. Cabellos-Aparicio, F. Coras, D. Saucez, and O. Bonaventure.
LISP-TREE: a DNS hierarchy to support the lisp mapping system.IEEE J.Sel.
A. Commun., 28:1332–1343, October 2010.

[15] D. Jen, M. Meisel, D. Massey, L. Wang, Z. B., and Z. L.APT: A Practical
Transit Mapping Service. IETF Internet Draft, draft-jen-apt-01.txt, May 2008.

[16] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a scalable ethernet
architecture for large enterprises. InProceedings of the ACM SIGCOMM 2008
conference on Data communication, SIGCOMM ’08, pages 3–14, New York,
NY, USA, 2008. ACM.

[17] H. Luo, Y. Qin, and H. Zhang. A DHT-Based Identifier-to-Locator Mapping
Approach for a Scalable Internet.IEEE Trans. Parallel Distrib. Syst.,
20:1790–1802, December 2009.

[18] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: an information plane for
distributed services. InProceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, pages 367–380, 2006.

[19] L. Mathy and L. Iannone. LISP-DHT: towards a DHT to map identifiers onto
locators. InProceedings of the 2008 ACM CoNEXT Conference, CoNEXT ’08,
pages 61:1–61:6, 2008.

[20] MobilityFirst Future Internet Architecture Project.
http://mobilityfirst.winlab.rutgers.edu/.

[21] L. Monnerat and C. Amorim. D1HT: a distributed one hop hash table. In
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.20th
International, page 10 pp., 2006.

[22] R. Moskowitz and P. Nikander.Host Identity Protocol (HIP) Architecture. IETF
Internet Standard, RFC 4423, May 2006.

[23] NSF Future Internet Architecture Project. http://www.nets-fia.net/.
[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content-addressable network. InProceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’01, pages 161–172, 2001.

[25] Y. Shavitt and E. Shir. DIMES - Letting the Internet Measure Itself,
http://www.netdimes.org/.

[26] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for
Internet applications.IEEE/ACM Trans. Netw., 11:17–32, February 2003.

[27] U. Weinsberg, Y. Shavitt, and E. Shir. Near-deterministic inference of AS
relationships. InProceedings of the 28th IEEE international conference on
Computer Communications Workshops, INFOCOM’09, pages 377–378, 2009.

