
Context

John-Austen Francisco

1. ABSTRACT
We present a system to allow users to locate network ser-

vices across an internetwork.

2. INTRODUCTION
While many services may exist across a network, the net-

work itself only exists to transfer data from point to point,
putting the burdern of discovering services on the user. Not
only does the user need to know what services are available,
but also what their network address is. Knowing all the
types and network locations of all services available across a
ubiquitous, dynamic, worldwide network, like the Internet,
is all but impossible. The Context Service Index (CSI) reme-
dies this by acting as a semantic lookup service that records
announcements from context services about the kinds of
data inferences they can provide and matches client service
requests against them. The CSI sends a list of the GUIDs of
all services with matching inference announcements to the
requesting client(s).

3. ORGANIZATION
Interactions with the CSI are divided into two categories;

client interactions and service interactions.

Figure 1: CSI Client Interactions

Figure 2: CSI Context Service Interactioons

3.1 Client Interactions
Clients can only query the CSI. This is done using a query

message type and specifying the kinds of context fields or
inferences the client wants to find. The CSI will respond
with either GUIDs of services that can provide those kinds
of context, or with a failure message. Clients can also query
the CSI to obtain a list of context types that a given GUID
can deliver.

3.2 Service Interactions
Services announce to the CSI what kinds of context they

can provide. While there is no provision for a service to
query the CSI, there is nothing preventing a service from
using the client protocol to do so. Services are expected to
be ready to deliver judgements and handle large amounts
of traffic as soon as they announce their services. Services
may overwrite their service announcments in order to add
or delete from their service list, although all operations that
alter state require a PKI authentication.

3.3 Protocol
• All characters outside of <> and [] are literal symbols.



• All fields, literal or variable, are separated by a comma
(’,’)

• All commands end in a period (’.’)

• Angle brackets (’<>’) denote a requied field that is
variable. The text between the brackets names the
field, but is not literal.

• Hard brackets (’[]’) denote optional fields that are vari-
able. The text between the brackets names the field,
but is not literal. 0 or more optional fields can be
included.

3.3.1 Announce
Message type used to announce a context service’s capa-

bilities to the CSI. The Announce message is only expected
for a GUID that does not exist in the CSI.
Service->CSI: initiate

1. ANNOUNCE,<GUID>,<capability name>[,<capability
name>].

CSI->Service: response

1. OK,<GUID>.
no problem

2. WARN,<GUID>,CAPEXIST,<capability name>[,<capability
name>].
This GUID has already announced the attached capa-
bilities within this announcement. Logical error, but
not an error state.

3. WARN,<GUID>,CAPTYPEDEF,<capability name>[,<cap-
ability name>].
The CSI does not know about this capability and does
not support any functions on it. The CSI will not ac-
cept any data for this type. The CSI will however store
the capability/GUID tuple and will answer lookups for
this type.

4. ERR,<GUID>,CAPTYPEILL,<capability name>[,<capability
name>].
The following capability types are, for some reason, il-
legal types. This is a functional error. The CSI will
not store these capabilities or accept data based on
them.

5. ERR,<GUID>,INTCAPSTORE,<capability name>[,<capability
name>].
The CSI has failed to store the capability/GUID tuple.
This is an internal error. It’s expected that the client
will either repeat their request or attempt to contact
a different CSI.

6. ERR,<GUID>,GUIDEXIST.
The CSI already has an entry for this GUID, preclud-
ing an Announcement-type message. The CSI will not
store any of the capabilities sent. The service is ex-
pected switch to an Update message.

3.3.2 Update
Message type used to alter a service’s current capability

list in the CSI any time after an initial Announce.
Service->CSI: intiate

1. REMOVE,<GUID>,<capability name>[,<capability
name>].

CSI->Service: response

1. OK,<GUID>,<capability name>.
No problem

2. WARN,<GUID>,NOCAPDEF,<capability name>[,<capability
name>].
The following capabilities that were removed are not
defined for that GUID. This is only a warning since the
effect, no tuple binding for that capability, is already
the case.

3. ERR,<GUID>,INTCAPREM,<capability name>[,<capability
name>].
The CSI has failed to update the capability/GUID tu-
ple. This is an internal error. It’s expected that the
client will either repeat their request or attempt to
contact a different CSI.

3.3.3 Index
- Any client (C) can query the CSI at any time to generate

a GUID/capability index
Client->CSI:

1. INDEX,<capability name>[,<capability name>]. -expect
response 0 or 1

CSI->Client:

1. OK,<GUID>[,<GUID>].
All matches

2. NO,<GUID>.
No GUID has all the capabilities listed

3. ERR,<GUID>,NOCAPDEF,<capability name>[,<capability
name>].
The CSI has no definition for some of the capabilities
listed

4. ERR,<GUID>,INTCAPIND,<capability name>[,<capability
name>].
The CSI has failed to find a GUID list for the capa-
bility list. This is an internal error. It’s expected that
the client will either repeat their request or attempt to
contact a different CSI.

4. USE CASES

4.1 Send to Teatime
The CSI can be used to send data to a dynamic group,

for instance to send a message to all persons in a kitchen
at teatime. The client would first request the CSI to find
services that can perform the location function. The client
would then choose a service GUID to communicate with,
ask for the locations of all GUIDs that service can locate,
determine which ones are in the teatime area, and then send
a message to them.



4.2 Decentralized Taxicab Dispatch
The CSI can aid in the decentralization of some storngly-

centralized resource allocation and management problems.
If taxicabs can themselves receive calls, they need not either
accept them or route them to the centralized dispatcher,
but can forward the calls themselves if the taxi can discover
which of the other taxis is nearer to the call than itself. One
way to do this is to intellligently name context services that
are exported in the CSI. If all taxicabs act as context services
and have a way of discovering what stree they are on, they
can update the CSI with that name. The driver who takes
a call could then query the CSI to see if any taxis are on
the street in question, or can get the current ’services’ of
all the taxi GUIDs it knows about, revealing their current
positions, allowing the driver who received the call to decide
which taxi should have the call forwarded to it.

5. LIMITATIONS
While designed to operate within the Mobility First In-

ternet, and link clients to service providers, the CSI has a
range of fundamental limitations.

5.1 No understanding of context
While it succeeds in linking clients to services, the CSI

does not understand context at all. It requires the clients
and the services to, a priori, understand all the types of
context services available. Unless the client looks for the
correct type of context inference, they will not find a service
that produces what they desire. This is akin to searching
for websites based on keywords, if websites could only be
described by keywords. Unless the correct set of keywords
are searched for, the desired site would never appear as an
option.

5.2 No unified view of context
While it succeeds in facilitating connection between client

and service, the CSI does not guarantee or enforce any uni-
fied view of the way context is interpreted or represented.
For instance, a ’location’ could be a name of a state, street or
building. It could be GPS coordinates, lattitude/longitude,
r/Pi from a center point, or a convex hull, to name a few.
It could also represent a point, adjacency, the state of be-
ing in a certain room, the state of existing within a certain
area. There are also issues in encoding any of these repre-
sentations of the semantic meaning of ’location’. The CSI
requires both the client and service to understand all of this
or synchronize on it out of band.

5.3 No understanding of context services
The CSI can deliver network-level information, namely

GUIDs, but it does not understand anything about the net-
work itself. It can not for instance provide a client with ser-
vice GUIDs that are ’closer’, ’lower latency’, or ’less loaded’.
The CSI can not reason about any qualitative or quantita-
tive aspect of context services.

6. REFERENCES


