Efficient Content Service in MobilityFirst

1. Introduction
Traditional Internet is based on a point-to-point conversation model between two static entities since its inception. However, the use of Internet has changed dramatically and we have two important observations: (1). the majority of Internet usage is about data retrieval and service access, where the user cares about content and is oblivious to location. (2). mobile Internet has become an indispensable technology in our daily life, with mobile data occupying a great proportion of Internet traffic. So the question arises based on those two observations: how to deal with the new challenge of mobile content delivery?
Under traditional host-to-host communication model, two hosts need to know each other’s network address for content delivery. And if any host moves, its network address will change, thus incurs the failure of content delivery. Although MobileIP has been proposed to solve the mobility problem in some extent, it still has lots of problems like triangular routing, scalability, etc. More severely, the host always needs to know where the content is before he can request the content. As content delivery, especially mobile content, becomes increasingly dominant and voluminous, current Internet reveals its inefficiency and mismatch. This inefficiency and mismatch has led to lots of application/service-specific solutions. Two representative examples are: (1). Content delivery network (CDN) transparently redirects clients to a nearby copy of the content file, which could reduces content delivery delay and help realize load balancing. However, as a massive overlay infrastructure, the service costs a lot and is specific for only contracted applications modified to utilize it. Besides, it still doesn’t solve the problem of mobility. (2). Peer-to-peer (P2P) systems enable users to search and retrieve the content file in a completely distributed manner and attract lots of application in content exchange. But as P2P systems lack information on network topology and an overall coordination on content delivery, the delivery performance is inefficient. In a word, traditional network architecture couldn’t solve the question proposed above.
We need to redesign the network architecture to accommodate content-oriented applications and services in mobile scenario, namely content-aware networking. The essence of content-aware networking is to decouple contents from their locations (namely name the contents directly) at the network level, not at the application level. As now contents are named independent from where it comes from or where it may be forwarded to, the network could automatically satisfy those two observations: a client could request content with its content name, without knowing its network address first; and as the content name is separated from its hosts, the mobility problem is thus solved.
There has been some work on content-aware networking. They have different schemes in how to name the contents and how to locate and route the contents correspondingly. CCN [3] and TRIAD [4] utilize a hierarchical structure to name the contents, and correspondingly content routing is based on semantic content names with a content-aware router announces name prefixes which cover the content that the router could serve. The hierarchical structure is useful for applications to represent relationships between pieces of data and ownership, and also help mitigate the routing scalability issue since routing entries for contents could be aggregated. However, hierarchical naming has its own problems. One is the degree of route aggregation decreases significantly when contents are replicated over multiple places, like in-network caching. The other problem is that name persistence is not reached since a hierarchical name has its semantic. Thus the content name needs to be updated when its semantic changes, for example, its ownership. Thus flat naming is proposed to solve the above shortcomings. DONA [5] employs flat and self-certifying names by defining a content identifier as a cryptographic hash of a public key. Persistence and uniqueness are achieved due to the flatness of content names. And authenticity is also automatically satisfied because we are using a cryptographic hash of public key as content names. However, flat naming also has problems. One is the routing scalability problem due to no possibility of aggregation, although routing on flat names [9] is also possible. For example, Routers in DONA form a hierarchical tree, and each router maintains the routing information of all the contents published in its descendant routers. Apparently, this tree-based content routing approach imposes an increasing routing burden as the level of a router becomes higher. Since DONA employs non-aggregatable content names, the scalability problem is severe. On the other hand, an additional name service between human-readable names and content names is needed as flat names are not human-readable.
Based on previous work of traditional Internet and content-aware networking, we propose three layers of names for contents: human-readable name, global unique identifier (GUID) and network address. GUID is a flat and self-certifying name for content, thus content persistence and authenticity is satisfied. Network address works in a similar way as IP today, thus the route scalability problem is solved. And there is a global distributed name resolution service (GNRS) which stores the mapping between GUID and its corresponding network address. Thus the client only needs to know the content GUID to access content, without knowing its location first. The network is capable of flat routing based on GUID and hierarchical routing based on network address, and the en-route router could update the binding between content GUID and content locations in a timely fashion by query the GNRS, which we call it dynamic binding. Thus the content mobility problem is easily solved and content availability is satisfied. As we see, our approach provides a strong mechanism for mobile content delivery. And we will further talk about our design for mobile content delivery under the MobilityFirst project [1] in more detail in the next section.

2. MobilityFirst approach
Content service could be characterized by the following three aspects:
· Content naming and locating;
· Content access model;
· Content caching;
2.1. Content naming and locating
We have three layers of names (human readable name, GUID (Global Unique Identifier), and network address) and two naming services (NAS (name assignment service), and GNRS (global name resolution service)) for content, as shown in Figure 1.
[image:]
Figure 1. Content naming
Human-readable name is a sequence of characters that are recognized by human, but not the network, such as film Lion King. And the NAS (name assignment service) is the service to create, publish and lookup the name of content into an ID recognized by network. Therefore, before human-readable names can be used in network applications, they must be “named” to network recognizable GUIDs.
How to regulate human-readable name and assign it to a GUID is still under research. One way for human-readable name is to use similar hierarchical names proposed in NDN [2], as they use semantic content names for routing. Another way is to use user-relative names proposed in [6, 7], but we need to consider the problem of ownership in this way. GUID is organized in the form P:Seq, where P is the cryptographic hash of the content owner’s public key and Seq is the content sequence number works as a label for the content, which is chosen by the content owner to ensure uniqueness. The granularity of GUID, namely the Seq, is determined by the content host. We should be clear that assigning GUID to network content is by no means to enumerate every possible content in any granularity. The owner may only assign popular content a GUID and let unpopular content be delivered at the application layer. In this case the owner can dynamically assign resource sequence number to a resource, when a content become less popular, the owner can recycle a sequence number for other contents. Then the left problem between human-readable name and GUID is how to resolve the mapping, namely the name assignment service. One solution is to organize NAS in a similar way as DNS, as the operation of lookup the name of content into GUID is not so frequent and certain delay is tolerant. Another way is build a search engine, which is also under consideration.
We also have GUID and network address for content, which implies the separation of identifier and locator of network entities, since GUID is persistent for content, different from network address. As location independent name, GUID is free from mobility and multi-homing. For the mapping of GUID and network address, we use a globally distributed single-hop hashing mechanism named GNRS (global name resolution service), as seen in [8].
GUID and GNRS are key to our design. GUID provides persistence and authentication, while GNRS provides availability. The network is capable of flat routing based on GUID and hierarchical routing based on network address, and could interact with GNRS in a timely fashion. Thus as long as the content consumer knows the content GUID, it could request the content and the network will pull the data back. The scheme works very well under both receiver mobility and sender mobility, as dynamic binding is used in the network. One point that needs to mention is that the consumer could certainly query the GNRS to get a list of network addresses for the content GUID, and it could choose one network address by itself, which ease the work of the network. But dynamic binding is still needed even in this way to get rid of mobility issue.
As we see, GNRS is the core component in content delivery. So how to ensure the operating of GNRS is still a question. The whole network is down if GNRS is not working. And how we should deal with attacks on GNRS is also under consideration.

2.2. Content access model
Content request/reply model:
Content request/reply model is based on the pull technology where the initial request for data originates from the client, and then is responded to by the server.
In this model, basic content retrieval process consists of three steps. In the first step, the requestor obtains the content GUID through the name assignment service. In the second step, the requestor looks up the GUID through the global naming resolution service (GNRS), which returns a list of content locations to the requestor. For each piece of content, GNRS maintains a list of locations where the content is stored, including caching locations. The requestor will then select the closest content location, and sends a content request in the third step. But the second step is actually not necessary as the network could lookup the GUID mapping through GNRS and do anycast, so the requestor could simply send out the request packet with only the content GUID, as shown in figure 2.
[image:]
Figure2. Content request/reply model

Content publish/subscribe model:
Content publish/subscribe model is based on push technology where the request for a given transaction is initiated by the publisher or central server. For the publish/subscribe system, senders (publishers) of contents do not program the contents to be sent directly to specific receivers (subscribers). Rather, published contents are characterized into classes, without knowledge of what subscribers there may be. Subscribers express interest in one or more classes, and only receive content that are of interest, without knowledge of what publishers there are.
There are two kinds of decoupling here: the decoupling of publishers and subscribers, and the decoupling of identifiers and locators. For the decoupling of publishers and subscribers, publishers post contents to an intermediary content broker and subscribers register subscriptions with that broker, letting the broker perform the process of content selection. Under such decoupling, publishers and subscribers are allowed to remain ignorant of system topology, and focus on content. For the decoupling of identifiers and locators, host GUIDs and content GUIDs are used in publish and subscription. Dynamic binding implied in the decoupling of identifiers and locators provides support for mobility.
The core problem for the content pub/sub model is the design of event service subsystem [10], namely the brokers. One idea is to use context-aware content delivery. The subscriber defines certain context about its requirements on content, and contents satisfied requirements are delivery to the subscriber through the event service subsystem. So there should be some kind of group content GUID here.
The pub/sub paradigm should be the main communication model for content-aware networking as we can decouple the content generation and consumption in time and space. Further research is still on the way.
[image:]
Figure 3. Publish/subscribe system [10]

2.3. Content caching
As content has its name separated from its location, in-network cache becomes natural (this is the power of persistent names!) Caching is a rather effective way to reduce content access latencies, not only for downloading static files, but for accessing dynamic content like multicast in teleconferencing or packet retransmission after packet loss. We should have both en-route caching (reactive caching, or local caching) and coordinated caching (proactive caching, or global caching). For en-route caching, the new location for the content doesn’t need to be notified to GNRS, as it works in an opportunistic fashion. But for coordinated caching, the new mapping should be updated in GNRS to support global optimization. However, cache management and replacement is still under research.

3. Comparison with other content services
3.1. CDN (content distribution networks)
CDNs are an application level overlay networks, while our design aims at network level. Different CDNs are isolated from each other, while our design provides a universal framework.
One important point is that our design could also works as an overlay network running at the application level. As the network address works in the same way as IP today, human-readable name and GUID could both be regarded as application level names for contents. So our design could also work as an overlay on IP.

3.2. CCN (content centric network [3]) and NDN (named data networking [2])
The fundamental difference between our architecture and CCN is the naming scheme. CCN uses hierarchical structured names and semantic-name based routing, while we use flat names (GUID) with three layers of name structure. The comparison between hierarchical naming and flat naming has been discussed in section 1. (We should know that NDN is a subsequent research project based on CCN. And we use CCN or NDN with no difference here.)
NDN uses a receiver-driven style for content delivery: the content requestor issues an interest packet first and then the content host replies with a corresponding data packet. Only the interest packets are routed and the data packet simply follows the reverse-trail left by the interest packet. This scheme puts the content requestor as the first place, as it’s the receiver determines what content and how much content that it wants. Thus it works quite well for receiver-centric applications such as downloading a paper. But there are many other scenarios where sender-centric applications work: the reason could be that the receiver is lazy to control the content delivery, or they don’t care, the content sender really wants to distribute its content (for example, the government needs to warn the public that a terroristic attack is on the corner). Our scheme supports both receiver-driven and sender-driven style for content delivery.
NDN relies on the content persistence and content caching to support mobility, while we use dynamic binding to support mobility in a much flexible and efficient way. For example, a content consumer requests some content but then moves to a new local network. Thus the data is likely to arrive at the old location and be dropped. Then the consumer needs to retransmits the Interest, it might pull the Data from a nearby location because of in-network cache. But in our scheme, when the consumer moves to a new local network, it will notify the GNRS. So en-route router for the Data could query the GNRS to get the new mapping and then the Data could still be routed to the consumer without dropping. This is the power of dynamic binding. Then a question arises: how does the en-route router decide whether it needs to query the GNRS for the Date? There are two ways for this: one way is there is certain probability for the router to query the GNRS for a specific Data which is related to the probability that the data consumer changes its location. The other way is that when the router finds the old network address is invalid, it will query the GNRS.

3.3. DONA (Data-oriented network [5])
DONA and our design shares lots of similarities. We both uses flat naming and have three layers of names for contents. But a fundamental difference lies in how to locate and route content. DONA uses a tree-based routing scheme. Routers in DONA need to build a hierarchical tree, and each router has routing information of all the contents published in descendant routers. A content request will proceed along the tree to find the location of the content, and then those two end-points could simply use network address for content transmission. On the other hand, we will build a global name resolution service (GNRS) to map content names to network addresses.
Besides, it’s not easy for DONA to support mobility, while mobility is a first class requirement in our design.

Reference:
[1]. MobilityFirst project: http://mobilityfirst.winlab.rutgers.edu/
[2]. Named data networking project: www.named-data.org
[3]. V. Jacobson et al., “Networking Named Content,” CoNEXT ’09, New York, NY, 2009, pp. 1–12.
[4]. M. Gritter and D. R. Cheriton, “An Architecture for Content Routing Support in the Internet,” 3rd Usenix Symp. Internet Technologies and Sys., 2001, pp. 37–48.
[5]. T. Koponen et al., “A Data-Oriented (and Beyond) Network Architecture,” SIGCOMM ’07, 2007, pp. 181–92.
[6]. B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and R. Morris. Persistent Personal Names for Globally Connected Mobile Devices. In Proc. of OSDI 2006, pages 233–248, Seattle, WA, USA, Nov. 2006.
[7]. Bryan Ford et al. User-Relative Names for Globally Connected Personal Devices. In 5th IPTPS, February 2006.
[8]. Tam Vu, Akash Baid, Yanyong Zhang, Marco Gruteser, Dipankar Raychaudhuri, Gloabal Name Resolution Services for the Mobile Internet using a Distributed In-Network Hash Table (DIHT)
[9]. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S. Shenker. ROFL: routing on flat labels. In ACM SIGCOMM, page 374, 2006
[10]. P. Eugster et al., “The Many Faces of Publish/Subscribe,” ACM Computing Surveys 35, 2003, pp. 114–31.
image3.png

image1.png

image2.png

