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ABSTRACT OF THE THESIS

Implementation and Evaluation of the MobilityFirst

Protocol Stack on Software-Defined Network Platforms

by Aravind Krishnamoorthy

Thesis Director: Professor Dipankar Raychaudhuri

This thesis presents the results of an experimental study aimed at implementing the

MobilityFirst protocol stack in Software Defined Network platforms. The Mobility-

First protocol involves a novel hybrid name/address based routing procedure. Globally

Unique Identifiers (GUIDs), which are host names, are first resolved by a Global Name

Resolution Service into routable network addresses, which are then used by the routers

to forward data. It also has support for enhanced network services using in-network

storage and compute. These features have been implemented in an SDN by using con-

troller software that learns about GUIDs and sets up MobilityFirst flows using VLAN

tags. The prototype implementation has been done using the Floodlight controller and

OpenFlow 1.0 switches. The Floodlight controller has been extended by adding mod-

ules that analyze MobilityFirst packets and set up corresponding flows. The prototype

has been evaluated by conducting performance experiments on both the control plane

and the data plane. The results show that the average processing time required at

the controller is of the order of 100µs and the data plane throughput for GUID for-

warded traffic reaches up to 800Mbps for mega byte sized chunks. The experiments

also highlight potential performance bottlenecks of SDN/OpenFlow networks.
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Chapter 1

Introduction

1.1 SDN and MobilityFirst

The past few years have seen the emergence of a new way of propagating control in-

formation in the network and making routing decisions. Software Defined Networks

(SDN) take a different approach to computer networking by separating the control

plane and the data plane. While routing in a traditional network takes place through

the constant exchange of information between the routers in the network, an SDN has

a central controller which defines how routers forward the packets. Every SDN switch

in the network communicates with the central controller, exchanging information about

the devices attached to it, and the controller uses this information and sets up forward-

ing rules on the switches that ensure end to end data transfer between the hosts attached

to these switches. This centralized control architecture facilitates easy introduction of

new network protocols and functions by making an entire map of the network available

at one place and allowing programmability of the data plane. SDN is thus a promising

platform for implementing future internet protocols such as MobilityFirst [1].

MobilityFirst is a future internet architecture which has been design on the principles

of handling at-scale mobility of end hosts and enabling novel content based and context

aware applications. Some of the key features of MobilityFirst are

1. Separation of naming and addressing - Global Unique Identifiers (GUIDs) which

are dynamically resolved to one or more network addresses by a Global Name

Resolution Service (GNRS) [2, 3].

2. When a MobilityFirst chunk arrives at the router, the forwarding decision can be

made within the router itself if it has a valid entry for this destination GUID (fast
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Figure 1.1: MobilityFirst Router Packet Processing Pipeline

path) or the GNRS can be queried for a network address if the router does not

have an entry for this GUID (slow path).

3. Delay tolerant routing with in-network storage to account for challenging wireless

environments [4, 5].

4. In-network compute and service IDs for enhanced network services as described

in [6].

1.2 Problem Formulation

Figure 1.1 shows the processing pipeline that data packets go through inside a Mobil-

ityFirst router. Considering one chunk (also defined as ”protocol data unit” or PDU)

of MobilityFirst data, the following are the key functions performed by the MF router.

1. As the link level packets belonging to the chunk enter the router, the aggregator

composes them into a single layer 3 datagram.

2. The GSTAR routing function looks at the header fields in of the chunk and decides

whether the chunk (i) should be forwarded based on NA or GUID, (ii) requires a

GNRS look up, or (iii) needs to be stored for a while because of a poor quality

downstream link.
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3. Once the forwarding decision is made, the segmenter splits the chunks in to ap-

propriate sized link level packets and takes care of the transfer to the next hop.

An SDN design of MobilityFirst should be able to perform the operations mentioned

above. While operations such as aggregating and splitting packets might not be feasible

on switches, there are ways of overcoming these limitations and setting up per chunk

flows. As will be shown in subsequent chapters, by adding required software modules

to the SDN controller and sending the first packet of each chunk to it, not only can

MF traffic be handled, features such as storage and in-network compute can also be

enabled.

The following section gives an overview of OpenFlow [7] and highlights some of its

potential limitations in supporting non IP protocols such as MobilityFirst.

1.3 OpenFlow

OpenFlow is a standard for the protocols that define the communications interface

between the control and data plane in an SDN. It is maintained by the Open Network

Foundation [8]. The following list outlines some of the basic exchanges that take place

between the control plane and the data plane.

1. Each time a switch in the data plane receives a packet which does not match any

of its forwarding rules, it encapsulates it with an OpenFlow header [9] and sends

it as a PACKET IN messages to the controller.

2. The controller analyzes the header fields in the packet and makes a routing deci-

sion.

3. It sends a FLOW MOD message to set up a flow rule on the switch which can

match based on L2 or L3 fields, and also specifies actions which can be simply

forwarding the packet out of one or more ports, or rewriting L2 and/or L3 address

fields before forwarding.

In the context of implementing MobilityFirst, the primary limitation of OpenFlow

is the fact that all L3 forwarding rules on the switch are currently based on IP. Hence,
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MobilityFirst traffic has to be handled using just L2 flows. Subsequent chapters show

that this can be achieved by tagging packets belonging to each chunk with specific

VLAN tags. Chapter 3 details the prototype implementation of MobilityFirst as an

SDN using OpenFlow and Floodlight [10] controller and chapter 4 shows that the

data plane performance is better than that of Click based software routers and the

forwarding throughput can approach line rate for certain traffic classes.

1.4 Related Work

SDN is an emerging area in networking and there has been a lot of research in the last

couple of years on both implementing new functions in SDN and evaluating the SDN

framework itself.

1.4.1 Routing and Applications

As mentioned previously, having a central controller and aggregating data about the

entire network in one place can enable some innovative applications and routing schemes

in the network. For example, [11] proposes a new method of application based routing

in a content centric network by making small changes to the application layer of the

content server and client, and by using OpenFlow’s potential abilities for dynamic

traffic redirection. [12] introduces OpenQoS, a novel OpenFlow controller design for

multimedia content delivery with Quality of Service support. Results in [12] show that

OpenQoS can ensure seamless video delivery with little or no artifacts, and at the same

time cause no adverse affects on other types of traffic in the network. [13] is very

relevant to the context of this thesis, since it presents existing SDN technologies and

discusses how they can be used to better enable future internet architectures. While

the authors of [13] present general advantages of SDNs and their potential use cases

in future internet research, we describe a detailed design for one such future internet

architecture in SDNs and present a prototype implementation.
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1.4.2 Evaluations and Optimizations

Though the SDN paradigm of having a central controller manage the whole network

has its benefits in terms of introducing new network functions and applications, it puts

a significant load on the controller depending on the type of traffic, and there has been

a lot of research and experimentation to analyze the performance of the OpenFlow

control plane and the data plane. [14] analyzes the data plane forwarding performance

of an OpenFlow switched network and compares it with L2 Ethernet switching and IP

routing. The authors present forwarding throughput and packet latency in underloaded

and overloaded conditions, with varying traffic patterns. As we shall show in later

chapters, traffic types and patterns can severely affect the forwarding performance in

an SDN depending upon the fraction of packets that has to go to the controller. [15]

presents a optimized multi-threaded OpenFlow controller implementation and uses the

cbench [16] tool to compare the performance against other OpenFlow controllers such

as single thread NOX and Beacon.

Another area of research and experimentation in SDN is the development of tools

and models to efficiently analyze the performance of OpenFlow based networks. [17]

presents a new flexible OpenFlow controller benchmarking tool that can spawn a set

of message generating virtual switches that can be configured individually to emulate

different network scenarios. [18] on the other hand uses experimental data on for-

warding throughput and control packet sojourn times to come up with an analytical

model that can predict the performance of the OpenFlow architecture under a given

set of conditions or parameters. Scalability is another important consideration in an

SDN as the load on the controller increases with the network size. [19] presents ex-

perimental results from OpenFlow networks that use proactive flows and those that

use reactive flows and analyzes to what extent each of these paradigms can scale. The

limited processing power of the CPUs in most switches is a potential bottleneck for

OpenFlow based networks. Split SDN Data Plane (SSDP) [20] adds a deeply pro-

grammable co-processor subsystem to the existing cost effective chip on the switch,

and thereby drastically increases the bandwidth of transferring packets from the data
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plane to the control plane. Chapter 4 evaluates the control plane and data plane of

the MobilityFirst SDN design using experiments similar to those in the works discussed

above. We shall also show that the switch bottleneck discussed in [20] is relevant to

the MobilityFirst SDN design.
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Chapter 2

MobilityFirst SDN Design

2.1 Large Scale MF Network

FIgure 2.1 shows a large scale MobilityFirst network with multiple domains and a single

global GNRS. The internal implementations of each of these domains could be different.

For example, one could be a traditional distributed network where the MF routers

exchange LSA messages and perform GSTAR [4] routing, while another neighboring

domain could be an SDN composed of a set of OpenFlow switches (or forwarding

elements running any other SDN protocol) associated with a central controller which

handles MF functions and sets appropriate rules on the data plane.

Figure 2.2 shows what a single SDN based MF domain looks like. A domain consists

of several end hosts that could be fixed or mobile, forwarding elements like OpenFlow

switches, service components like Network Attached Storage and compute servers, and

the central controller. In order to detail the design of how various MF features are

supported in the SDN domain, consider a scenario akin to the one in Figure 2.2. End

hosts S, X and Y are attached to SDN enabled switches that are connected to the

controller. MF service elements such as the NAS box and compute server are also

attached to the SDN switches. In the beginning, the SDN switches do not have any

forwarding rules in them. Hence, for a fully functional MF network, the controller needs

to perform the following functions.

1. Learn about all the hosts and service components as they join and go live on

the network and build a database of GUIDs and their attachment points in the

network.

2. As MF traffic starts to flow through the network, use the information from the
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GUID DATABASE

Figure 2.3: Controller Building the GUID Database using Link Probe Messages

learning phase to set up appropriate forwarding rules on the switches to ensure

end to end data transfer.

3. Update the GUID database and the GNRS as and when mobile hosts migrate

from one attachment point to another or when they leave the network.

4. Send packets to the storage nodes when required, and manage the load if there

are multiple NAS boxes in the network.

5. Track the service IDs in MF chunks and route traffic through the compute servers

if required. As with the case of storage, manage the load on each compute server

if there is more than one in the network.

2.2 Data Flow in a MobilityFirst SDN

As hosts and switches come live in the MobilityFirst SDN, there is a series of steps

involved in enabling end to end data transfer between two hosts. This section details

the key functions involved.

2.2.1 GUID Learning

Every MF host that joins the network sends broadcast messages called Link Probes.

These link probes, which contain the GUID of the host are used by the controller to
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associate each GUID with its attachment point in the network. This way the controller

builds a database of every GUID in the local network as shown in Figure 2.3.

In addition to hosts, the controller will also learn about the service components such

as NAS boxes and compute servers in the network. The service components can use a

simple discovery protocol to advertise their location and features to the controller.

As and when the controller learns about each host or service GUID in the network,

it will report it to the GNRS, which can be queried by the controllers of other MF

domains or by traditional MF routers.

2.2.2 Routing Decision

When MF data is transferred as chunks, only the first packet of each chunk has the

routing header which contains fields such as service ID, source GUID, destination GUID

etc. In the SDN set up, the first packet of each chunk is sent by the switch to the

controller. The controller looks at the header fields in the packet and uses its GUID

database to locate the attachment point of the destination device for this chunk. It

could also send out a GNRS request or decide to call upon storage or compute services

as will be described in subsequent sections. Once the routing decision is made, flow

rules have to be written on all switches along the path to ensure that subsequent packets

belonging to this chunk are forwarded by the switches to the destination host.

2.2.3 Flow Rules

When associated with a MobilityFirst SDN, every host that sends data on to the net-

work will tag the data packets with the Hop ID as the VLAN tag. Since the Hop ID

of all packets belonging to a chunk remains the same, all the packets in a chunk have

the same VLAN tag on them. This allows the controller to set up a flow rule which

matches packets based on the VLAN tag. Once the controller makes the forwarding

decision, it sends out flow rules to all switches along the path to the destination host,

matching packets based on the source MAC address and VLAN tag. Since the switches

now have a forwarding rule for this chunk, all subsequent packets belonging to this

chunk get forwarded to the destination host. A typical flow rule established to handle
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Figure 2.4: Routing decisions made by the controller based on header fields

a MobilityFirst chunk is shown below.

ETHER TYPE = 0X27C0, VLAN ID = 101, SRC MAC = 2E:32:4D:54:32:4A =>

OUT PORT = 21

2.3 MobilityFirst Functions and Services

This section describes how MobilityFirst features, specifically mobility management, in-

network storage and in-network compute are implemented in an SDN. The MF chunk

handling and flow set up described in the previous sections serve as a foundation for

these advanced functions.

2.3.1 Mobility Management

As already mentioned in previous chapters, MF is designed around the principle of

seamless mobility management without placing any burden on the hosts or applications.

This is achieved by decoupling the host name from the host address, and keeping the

GNRS updated with the latest network address associated with each GUID (host name).

In an SDN, mobility within the domain of a controller can be handled without the need

for a GNRS and a GNRS query can be used when a host moves outside the domain.
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Intra Domain Mobility

We define intra domain mobility as the scenario when a host dissociates from one

attachment point and associates to another, and both attachment points are controlled

by the same SDN controller. This is depicted in Figure 2.5. The SDN architecture

is inherently suited to easily handle this scenario since the switches in the data plane

notify the controller of all device attachments and disconnections.

In Figure 2.5, consider the case when host Y moves from the switch S3 to the

switch S2. The switch S3 reports the dissociation even to the controller and the switch

S2 then reports the association event to the controller. In addition to this, the controller

also gets the link probes that host Y sends out after attaching to the middle switch.

The controller uses this information to update the attachment point for the GUID of

host Y in its local GUID database. If the network address of Y has now changed,

the controller will also update the GNRS about the change. Now that the controller’s

GUID database is up to date, it can install new forwarding rules on the switch to make

sure data destined to Y is delivered to its new location.
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Inter Domain Mobility

We define inter domain mobility as the scenario when a host dissociates from an attach-

ment point under one SDN controller and associates with an attachment point under a

different SDN controller. Handling this type of mobility requires coordination between

the controllers of the two SDN domains. However, it is not necessary for them to di-

rectly exchange information between each other. All that the controller needs to do is

update the GNRS each time a new device joins the network and the controllers of other

domains can then query the GNRS periodically to find the network address of GUIDs

that are not a part of their local network.

In Figure 2.6, consider the case where host Y migrates from its existing attachment

point in the domain under controller 1 to an attachment point in the domain under

controller 2. In this case, controller 1 gets notified of the dissociation. Since it gets no

further information about host Y, it will query the GNRS for the current location of

the host with GUID Y. Controller 2, on receiving the link probe from Y, would have

updated the GNRS with Y’s current location. The GNRS will thus respond to controller

1 with the current network address of Y. Controller 1 will now set up forwarding rules

that will forward all further packets destined to Y to the new SDN domain that Y is

now a part of.
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2.3.2 In-network Storage

As part of the GUID learning, the controller also learns about the NAS devices in the

network. These storage devices are used to temporarily store chunks if the link to the

destination host is down or if the destination GUID cannot be resolved to a routable

address by the GNRS. This class of delay tolerant traffic is indicated by a specific value

in the service ID field of the first packet of each chunk. When the controller receives

such a packet and finds that a destination host cannot be found at this point, it sends

the chunk to the storage device. This is done by setting up flow rules on the switches

that will forward all subsequent packets in the chunk to the storage device. However,

since the packets are now going to a different node than the one they were destined to,

the L2 destination address on the packets has to be rewritten to that of the storage

node. A flow rule performing this action would look like

ETHER TYPE = 0X27C0, VLAN ID = 101, SRC MAC = 2E:32:4D:54:32:4A =>

DATA LAYER DST = 2E:32:4D:3F:4A:74, OUT PORT = 18

Figure 2.7 represents the scenario described above. When the source sends a chunk

to GUID X, and the controller realizes that the device with GUID X is currently not

associated with the network, it sets flow rules on the switches S1 and S2 to set up a

path that forwards all packets in that chunk to the NAS box attached to switch S2.
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Figure 2.8: MF chunks that require an in-network compute service are first forwarded
to the Compute Server and then forwarded to the destination

When the device X shows up on the network, the controller learns of it through the

link probe broadcast and can then signal the NAS box to forward the chunk to host X.

2.3.3 In-network Compute Services

MobilityFirst also has in-network compute in order to enable enhanced network services.

When a stream of data requires a compute service in the network, it is specified by

using the service ID field. When the controller sees a chunk with this service ID field,

it immediately sets up a flow rule which sends subsequent data packets to the compute

server instead of the destination. Just like sending data to the storage router, this

requires a rewrite in the L2 destination field of the packets since they are being sent

to a node different from the the one the packets were destined to. Another set of flow

rules are used to set up the path from the compute server to the destination host. A

flow rule sending data to the compute server would look like

ETHER TYPE = 0X27C0, VLAN ID = 101, SRC MAC = 2E:32:4D:54:32:4A =>

DATA LAYER DST = 2E:32:4D:4E:54:6A, OUT PORT = 19
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Figure 2.8 represents the scenario described above. When the source sends a chunk

with the service ID field indicating the requirement of a compute service, the controller,

sets up a flow rule on switches S1 and S2 to send packets of that chunk coming from

the source to the compute server. The controller also sets up another set of flow rules

on switches S2 and S3 to send data coming from the compute server to the destination

host X.
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Chapter 3

OpenFlow Based Prototype

MobilityFirst features as detailed in the Chapter 2 have been implemented using the

OpenFlow protocol and the Floodlight controller. The following sections briefly sketch

the modular structure of the Floodlight controller and describe in detail the additional

modules built on top of Floodlight in order to handle MF functions.

3.1 Platform

Section 1.3 outlined the OpenFlow protocol and the main interactions between the

control plane and the data plane. The MobilityFirst SDN prototype works on any

network consisting of standard OpenFlow switches. Floodlight has been used as the

OpenFlow controller, and MobilityFirst modules have been built on top of it.

3.1.1 Floodlight

Floodlight is an Apache licensed, Java based OpenFlow controller that can work with

physical and virtual switches that speak the OpenFlow protocol. It takes care of the

communication with the OpenFlow firmware on the switch and also exposes APIs that

allow the user to set up flows on the switch in a proactive or a reactive manner. Flood-

light also provides a REST API that can be used to query the switch for statistics such

a traffic on each port, traffic per flow etc. The REST API can also be used to set

up static flows on the switch. However, as the name suggests, these flows can be set

up only with prior knowledge of the network or expected traffic and are hence known

as proactive flows. Floodlight also allows dynamic flow set up based on inspecting

PACKET IN messages. This is where its module loading system comes in.
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3.1.2 Modular Structure

Functions that analyze the traffic and set up flows or manage the network dynamically

are organized as modules in Floodlight. Configuration files can be used to define which

modules are loaded during the controller’s start up, and the order in which OpenFlow

messages flow through the modules.

OpenFlow messages can be of several types, such as PACKET IN (sent by the

switch to the controller when it receives a packet that does not match any forwarding

rule), OFPT PORT STATUS (sent by the switch to the controller when the status of a

physical port of the switch changes) etc. Each of the modules in Floodlight can listen

for, or in other words, subscribe to a set of message types. Each time the controller

receives an OpenFlow message, it passes through all the modules that have subscribed

for that specific type of OpenFlow message. Based on the information contained in

these messages, the modules can perform computations and decide to add new entries

or remove entries from the flow tables on the switch.

In the case of implementing MobilityFirst functions, what the new modules need to

subscribe to are the PACKET IN messages which will bring in the link probes, CSYNs

and all other MF packets to these modules. They can then be handled appropriately

to perform the desired functions, as will be described in the next section.

3.1.3 Core Modules

Floodlight has a set of core modules that take care of communicating with the switch

and using updates such as OFPT PORT STATUS to maintain an up to date topology

of the network. These modules can be queried to access the information they have

accumulated. Following are some of the core modules that other MF modules will call

during their pipeline.

1. DeviceManager - Handles device added and device removed notifications from

the switch to maintain a database of devices in the network. The devices can be

queried by their L2 address.

2. Routing - Given any two switches in the network, the routing module uses
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Figure 3.1: Module Structure of Floodlight With MobilityFirst Functions

Dijkstra’s algorithm to return the shortest path between the two switches. Once

the destination device for a packet is found, this module is used to arrive at an

end to end path over which the flow has to be set up.

3.2 MobilityFirst Modules

Figure 3.1 shows the modular structure of Floodlight along with the MobilityFirst

modules. The MF modules interact among themselves and with Floodlight’s core mod-

ules to perform the desired functions. This section details the functions of each module

and the interaction between them.

3.2.1 MobilityFirst Packet Classifier

As a PACKET IN messages arrives at the controller, Floodlight’s core modules dissect

it and expose the header fields in the packet. However, the dissector looks for IP headers
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and hence in order to perform MF functions, the first requirement is a dissector that

strips the PACKET IN message and exposes MF header fields to other modules that

require them.

The MF packet dissector inspects the ETHER TYPE field of the frame in the

PACKET IN message, and on finding an MF packet, extracts the various header fields

such as source GUID, destination GUID, hop ID, service ID etc. based on the packet

type. Other modules such as the GUID learning or routing module can then use these

fields to populate a table, initiate a flow set up etc.

3.2.2 GUID Learning and Routing

Once an MF packet is found inside a PACKET IN message, the packet type is checked,

and link probe packets are passed on to the learning module and CSYNs and data

packets are passed on to the routing module.

GUID Learning

The GUID learning module operates on link probes and as described in Section 2.1,

checks the source GUID in the link probe and adds it to the GUID table along with

the source MAC address. Once all the hosts in the network boot up, the controller has

a table of all GUIDs in the network and corresponding MAC addresses.

GSTSR Routing

The routing module handles MF PACKET IN messages that arise from data packets,

specifically the first data packet of each chunk. Once a data packet is identified, the

routing module uses the MF dissector to extract the destination GUID from the header.

It then looks up the GUID table built by the learning module for the MAC address

associated with this GUID. If a MAC address is found, then Floodlight’s core routing

module is used to find a route to the switch to which the destination host is attached to

and flow rules based on VLAN tags are set on all switches along the path as described

in the previous chapter.



21

Storage and Compute Managers

Additionally, the routing module also communicates with the storage and compute

managers handles the following special cases.

1. If the GUID table does not contain an entry for the destination GUID in the

packet, then the routing module can query the GNRS for a network address for

this GUID.

2. If the destination device with this MAC address cannot be found, then the routing

module sets up a flow to forward all packets belonging to this chunk to the a

storage device instead of the destination host. The storage manager holds data

about the current load on each storage node in the network and tells the routing

module which node the chunk should be sent to for storage.

3. If the service ID field in the packet indicates that an enhanced network service is

required, then the routing module sets up flows to forward the rest of the packets

belonging to this chunk to a compute server instead of the destination host. The

compute manager, which maintains data about the current load on each compute

server in the network, tells the routing module which compute server the chunk

has to be forwarded to.
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Chapter 4

Evaluation and Validation

In order to evaluate the performance of the prototype, experiments were run on the

Orbit testbed in WINLAB. The performance can broadly be split into two categories;

performance of the control plane and that of the data plane. Analyzing the performance

of a MobilityFirst SDN prototype is especially interesting considering the fact that

depending on the chunk size, the fraction of packets that have to go through the control

plane could vary significantly. Even if the control plane delay is of an acceptable order,

the impact on the overall performance could be significant for small chunk sizes. Hence,

some of the data plane experiments focus of measuring the performance across a range

of chunk sizes.

4.1 Control Plane

Figure 4.1 depicts the various components contributing to the overall control plane

delay, which is the time incurred in setting up the flow for an MF chunk.

4.1.1 Flow Set up Delay

The overall flow set up time T is the sum of the three components T1 the transmission

delays, T2 the processing time at the controller and T3 the flow installation time on the

switch. Out of these, T1 and T3 depend on the hardware of the hosts and the switch

respectively. However, T2, the time taken by the controller to process a MobilityFirst

packet and send the FLOW MODs to the switch is of much more significance since it

is the component specific to a MobilityFirst implementation.

The CSYN message is used to initiate the transfer of a chunk of data in Mobility-

First. It is this packet that goes to the controller and initiates the flow set up for a
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Figure 4.1: Various components contributing to the overall flow set up delay

Table 4.1: Average CSYN RTT and average processing time at the controller

CSYN RTT 3.5ms 0.46ms

Controller Processing Time 114µs 32µs

chunk. Once the CSYN message has been acknowledged, the sender can initiate the

transfer of data packets belonging to the chunk. The delay in exchanging the CSYN

message is the overhead for the transfer of each chunk of data. The experiment to

measure this delay consisted of 10000 CSYN messages sent sequentially from a source,

each of them going to the controller and initiating a flow set up. Two different delays

were measured,

1. Total CSYN RTT - Figure 4.2 shows the path for this RTT, time stamps at the

source were used to measure the RTT for each CSYN.

2. Processing Time at Controller - Time stamps at the controller’s interface were

used to measure the time spent by each PACKET IN at the controller.

Table 4.1.1 shows the average time spent by the CSYN at the controller and the average

total RTT. It can be seen that the time spend processing at the controller is only a

very small fraction of the overall RTT.
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Figure 4.3: Packet processing rate of the switch CPU

4.1.2 Data Plane to Control Plane Bandwitch at the Switch

The average processing time at the controller for an MF packet that requires a local

GUID look up is 114µs as explained above. In terms of the number of MF PACKET INs

that the controller can process per seconds, this translates to 8772 packets per second.

The other significant delay in packets that have to be sent to the controller is at the

switch. When a packet arrives at the switch, and does not match any of the flow rules

present in the switch’s flow tables, it has to be encapsulated with the OpenFlow header

and sent to the controller. This fetching and encapsulation is done by the switch’s

CPU, which, as pointed out in [20] is usually a cheap low capacity processor that

cannot handle heavy loads. However, for MF traffic to flow in a commodity OpenFlow

network, it is necessary that one packet in each chunk gets sent to the controller to look
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up the local GUID database or the GNRS. This could potentially result in a heavy load

on the switch CPU. To understand the impact this could have on the performance of

the network, we studied the maximum throughput that the switch CPU in a Pronto

3290 could push to the controller in terms of packets per second. In this experiment,

a source sends MF CSYN packets to the switch, which in turn encapsulates them with

the OpenFlow header and sends them to the controller. The rate at which the source

loads the switch with MF packets is controlled, and the we look for the rate at which

PACKET INs arrive at the controller.

Figure 4.3 presents the PACKET IN arrival rate at the controller against the packet

arrival rate at the switch. The curve is linear till 1100 packets per second and then

flattens out irrespective of how much the arrival rate at the switch increases. We noticed

that the switch drops packets that that the CPU is unable to process, and hence for an

arrival rate of more than 1100 packets per second, the switch starts dropping packets

in the transfer from the data plane to the control plane.

4.2 Data Plane

The reference implementation of MF software router based on Click achieves a for-

warding throughput of around 260 Mbps for 1kB chunks and flattens out to around 400

Mbps at a chunk size of 1 MB. It then remains more or less constant for chunk sizes

ranging from 1 MB to 12 MB. The OpenFlow prototype shows a much higher variation

in performance with change in chunk size. For very small chunk sizes, the throughput

is very low of the order of few hundred kbps. However, this is understandable consid-

ering the fact that for chunk sizes of 1 kB, every data packet goes to the controller

and initiates a flow set up. As the chunk size increases, fewer packets have to go to

the controller, and hence the throughput starts to rise. For chunks that are forwarded

based on GUIDs, we see from Figure 4.4 that the throughput peaks at over 800 Mbps

for chunk sizes of 10 MB or more. Hence, for significantly large chunks, the OpenFlow

prototype can provide a better forwarding performance than software routers.
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4.2.1 Single Flow Performance

As discussed before, the fraction of packets going to the controller and the time spent

at the controller can significantly affect the forwarding performance in the SDN set

up. In MobilityFirst, different traffic classes will have different processing times at the

controller, and sometime even a different fraction of packets going to the controller.

Hence the forwarding performance for each of these traffic classes is expected to be

different. Figure 4.4 compares the throughput achieved across a range of chunk sizes

for NA based forwarding, GUID based forwarding and chunks requiring GNRS lookup.

For forwarding based on network address, only the first packet of the first chunk

has to go to the controller. Since a flow can be set up on the switch based on the NA of

the destination, all packets belonging to all the subsequent chunks are forwarded by the

switch. As expected, this gives the maximum performance. GUID based forwarding

was discussed above and the increasing curve can be attributed to the decrease in the

fraction of the packets going to the controller. For traffic in which each chunk has to

undergo a GNRS lookup, the curve is similar to that of GUID based forwarding, but

the throughput values are much lower. This can be explained by the fact that while

the fraction of packets going to the controller is same in both the cases, the GNRS look

up incurs an additional delay at the controller which impacts the overall throughput.
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4.2.2 Effect of Traffic Requiring GNRS Requests

When the first packet of an MF chunk arrives at the controller, it uses the information

gathered from its GUID learning process to identify the location of the destination

device on the network. However, if the destination host is not located in the same

SDN domain, then the controller does not have the attachment point in its GUID

database and has to query the GNRS for the current location of the destination GUID.

Querying the GNRS and awaiting for it’s response contributes to an additional delay in

the control plane. [3] presents experimental results on the average delay incurred in a

GNRS query, and we use values from [3] to simulate the GNRS delay at the controller

for every chunk that requires a look up.

Figure 4.5 shows the results of an experiment that was conducted to understand

the impact of the traffic that requires GNRS on the overall throughput. The curve

with maximum throughput is the one which has no traffic that requires GNRS look up,

every chunk is destined to a GUID that has an entry in the controller’s local GUID

database. From the rest of the curves, it can be seen that an increase in the number

of chunks that require a GNRS look up causes a hit on the throughput. For chunks

of size 10 MB (the maximum throughput in each curve), the throughput decreases by
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Table 4.2: Average per flow throughput for various chunk sizes and number of flows

Chunk Size (MB) # of Flows Ave. Throughput Ave. throughput decrease per flow (Mbps)

1
1 493

432 440
3 407

2
1 653

382 612
3 577

4
1 729

182 713
3 693

8
1 794

12.52 784
3 769

10
1 818

7.52 810
3 805

more than 300 Mbps for traffic in which 80% of the chunks require a GNRS look up

as compared to traffic that has no chunks that require a GNRS look up. However, in

this experiment, responses from the GNRS are not cached at the controller and two

consecutive chunks with the same destination GUID results in two GNRS look ups.

By maintaining a cache at the controller for storing the responses from the GNRS, the

delay can be reduced to an extent. However, caching GNRS responses introduces the

problem of having stale entries in the cache, and the timeout duration of the cached

values has to be decided carefully based on the network parameters and the frequency

of end host mobility in the network.

4.2.3 Effect of Multiple Flows

In a real world scenario, several hosts in the same SDN domain could be exchanging

data simultaneously. The existence of multiple flows at the same time loads the in

places such as the switch’s data plane, the switch’s CPU transferring packets from the

data plane to the controller, and the controller itself as it now has to analyze a larger

number of packets per second and set up a larger number of flows on the switches in

the network. As a result, the number of flow rules that the switches have to install also
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increases and so does the time taken to match incoming data packets against the flow

rules (since most switches do a linear search on the flow table that holds the wildcarded

flow rules). Considering the OpenFlow prototype has been built to use wildcard flow

rules for MF traffic, and the inherent requirement that one packet per chunk has to

be sent to the controller for processing, it can be expected that multiple MF flows in

the SDN domain could result in a decrease in the average throughput because of the

factors mentioned above.

Table 4.2.3 presents the results from an experiment that was performed to measure

the impact of multiple MF flows on the average throughput. The last column in 4.2.3

is the key figure which represents the hit in throughput caused by the addition of each

MF flow. It can be seen that this is 43Mbps for flows with chunk size 1MB, which is a

decrease in throughput by 8.7%. As we increase the chunk size, the hit in throughput

decreases and this can be attributed to the decrease in the fraction of packets that are

sent to the controller. For example, for 10MB chunks, the decrease in throughput per

flow is only 7.5Mbps and this is just a 0.91% when compared to the baseline single

flow throughput of 818Mbps. The results thus show that a single OpenFlow switch can

handle multiple MF flows as long as the chunk size is of the order of several MB. While

this is feasible for traffic on Ethernet, it might not be possible over a wireless link and

hence multiple MF flows could result in a significant decrease in throughput in such a

scenario.

4.3 Performance Bottlenecks

Clearly the load on the controller for MobilityFirst traffic is much higher than the load

for IP traffic because one packet per chunk has to go to the controller to initiate the

flow set up. Hence for small chunks that create a lot of control traffic, performance

bottlenecks can be expected in some parts of the network. In this section, potential

locations for the bottleneck are considered and analyzed.
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4.3.1 Controller

Results from the previous section showed that the time taken by the controller to process

an MF PACKET IN is 114µs on average. Ideally, this puts the processing throughput

of the controller at over 8700 PACKET INs per second. While this is a significantly

large number for mega byte sized chunks, some bottlenecks might arise when several

switches send concurrent PACKET INs to the controller.

4.3.2 Switch CPU

Every time the switch gets a packet that does not match any of the flows in its tables,

it has to encapsulate the packet with the OpenFlow header and then forward it to the

controller. This process takes place in the switch’s CPU which is usually not powerful

enough to handle heavy loads. As shown earlier in this chapter, on a Pronto 3290 the

upper limit on the rate at which the switch could send packets to the controller was

found to be 1100 packets per second. When several hosts connected to the same switch

start sending data as small chunks, this could become a very severe bottleneck in the

control plane as pointed out in [20]. The authors in [20] also come up with a solution

to this problem by adding another more powerful CPU to the switch and using that to

process packets that need to be transferred to the control plane. Such a solution could

be even more relevant in an SDN handling MF traffic considering the inherently larger

amount of traffic in the control plane for MF as compared to IP.

4.3.3 Switch Flow Tables

Every MobilityFirst flow is a wildcard flow rule that matches on a specific set of header

fields. The number of wildcard rules that most switches support is of the order of a few

thousands. Similar to the switch CPU, the flow tables could become full if too many

hosts on the same switch initiate a large number of flows by sending data as small

chunks, and hence the flow table size is also a potential bottleneck for a MobilityFirst

network.
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Chapter 5

Conclusions and Future Work

The MobilityFirst protocol stack can be implemented on an SDN platform and our

design shows that all key features such as hybrid name-address forwarding, storage

for delay tolerant traffic and in-network compute services can be implemented. The

OpenFlow based prototype built on top of the Floodlight controller serves as a ref-

erence implementation for key features such as GUID based forwarding and enabling

in-network storage. The modular structure of the controller allows us to easily intro-

duce new network functions and services by extending the controller with new modules

that handle the required services.

Performance evaluations show that for chunk sizes that are in the order of mega

bytes, the forwarding throughput is much higher than that of software routers, and

approaches line rate for traffic that can be forwarded simply based on GUIDs. Chunks

that require a GNRS look up reduce the throughput as they incur an additional delay for

the communication between the controller and the GNRS. This could get compounded

when considering the fact that there could be multiple flows in the same SDN domain,

all having a significant fraction of chunks that require a GNRS look up. However, for

traffic within the SDN domain, multiple flows can be supported with minimal decrease

in throughput.

Some of the limitations include

1. Low throughput for small chunks.

2. Heavy load on the switch CPU when a large fraction of packets have to be sent

to the controller.

3. Potential shortage of flow tables for large networks that continuously exchange
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data as small chunks.

Limitation 1 can be addressed as SDN switches evolve and start supporting flows

based on arbitrary bytes in the header instead of just IP header fields. Solutions for

the switch CPU bottleneck already exist as pointed out in [20]. As SDN switches start

supporting flows based on arbitrary header fields, wildcard flows can be avoided thereby

giving us a much larger flow table to use.

For future work, the OpenFlow prototype can be extended in a few ways, the first of

which is interfacing the controller with the GNRS. Future work also includes designing

and building a protocol for the controller to manage the storage and compute elements

in the network. If the modular structure of the controller functions are maintained,

then the existing prototype can be naturally extended as new network services are

introduced into MobilityFirst.
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