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1.  Introduction 

 

The MobilityFirst Future Internet Architecture project is geared around the principle that mobile 

devices and their associated applications must be treated as first-class Internet citizens.  

Traditionally, the challenges associated with mobility and wireless communication were 

partitioned from the core Internet and handled as a “last hop” problem.  However, with the 

prevalence of hand held and other wireless devices, many acting as transit points for routing 

purposes, these challenges will have to be address throughout the entire access network and, 

to some degree, in the core itself.  In fact, we envision a future Internet where networks are not 

strictly characterized (e.g., core vs. access, wired vs. wireless, ad-hoc vs. managed) but are 

instead fluid and highly heterogeneous. 

 

Since most of the interesting mobility challenges will occur relatively close to end users, it is 

critical that MobilityFirst presents a flexible, robust, and unified means for exchanging data in a 

local area through many different types of environments.  To this end, this paper presents 

GSTAR, a generalized storage-aware intra-domain routing protocol capable of high performance 

in a variety of mobility-driven environments, including wired, wireless mesh, wireless ad-hoc, 

and DTN.  GSTAR is fundamentally a link-state protocol that incorporates readily available 

router storage to seamlessly bridge different environmental challenges. 

 

At a high level, GSTAR maintains time-sensitive information about links within its currently 

connected component (e.g., all nodes to which an instantaneous end-to-end path exists from 

the node in question) and time-insensitive information about general connection patterns 

between all nodes in the network.  It attempts to use the time-sensitive information when 

possible, and fall back on the connection patterns when needed.  In this way, it can be thought 

of as a MANET+DTN protocol that is easily extended to more stable, perhaps wired, 

environments.  GSTAR routes on flat identifiers, namely GUIDs, and proactively transmit 

topology information about GUID adjacencies. 

 

At a high level, GSTAR can be summarized as follows: 

 The core of the protocol is link state (based on CNF / STAR routing, with DTN additions), 

utilizes readily-available routing storage, and relies on hop-by-hop data transfer. 

 It can respond to link quality fluctuations and congestion in the network by proactively 

storing message in the network downstream 

 It is disruption-tolerant and can handle long and/or frequent disconnections 

 



The rest of this report is presented as follows.  First, the core principles and concepts of GSTAR 

are described.  This is followed by a detailed description of the protocol, including path 

selection, storage-aware forwarding decisions, and DTN fallback mechanisms.  An ns3 and CLICK 

implementation is then described and preliminary results analyzed.  Next, a brief discussion on 

open problems and possible extensions is presented.  Finally, future work is presented and the 

report is concluded. 

 

2. Motivation 

 

GSTAR is motivated primarily by supporting highly heterogeneous networks in a wide range of 

mobility-driven environments.  A single network may include desktop computers, laptops, 

smartphones, and vehicles, which naturally brings a multitude of mobility-driven environmental 

challenges, such as those found in ad-hoc networks and DTNs (see Figure 1) 

 

 
Figure 1:  A heterogenous network and the mobility-driven challenges associated with it 

 

To better understand the goals and guiding principles of GSTAR, it is important to visit the 

overall MobilityFirst routing challenges and associated principles.  The major challenges found 

in a mobility-centric Internet are as follows. 

1. Host Mobility – Mobile hosts must be handled as core to the network design and not 

rely on added infrastructure and possibly suboptimal routing techniques such as 

MobileIP. 

2. Varying levels of link quality – Transport protocols, such as TCP, perform poorly in 

mobile environments where link qualities fluctuate.  Instead of relying on end-to-end 

acknowledgements as congestion feedback, bulk data transfer in a hop-by-hop fashion 

and the ability to temporarily store data are useful. 

3. Varying levels of connectivity – Due to the heterogeneous, mobile nature of future 

networks, complete disconnections and partitions should be expected.  Since traditional 



ad-hoc protocol fail in these environments, techniques from the DTN community must 

be used to help facilitate data transfer. 

4. Multi-homing – Most devices have or will have multiple radios, and hence the potential 

for multiple network attachment points.  The future Internet should therefore 

proactively utilize and take advantage of this. 

5. Context-aware routing paradigms – Group-based communication, such as contacting 

any or all nodes that meet some characteristic is becoming increasingly important in 

many different networks such as disaster recovery networks, sensor networks, and 

mobile social networks.  

 

Each of these challenges, to some degree, carries over to and must be address locally.  

Furthermore, these five challenges bring to light four main design principles of MobilityFirst 

routing. 

1. Separation of naming and addressing 

2. Late binding 

3. In-network storage utilization 

4. Conditional routing behavior 

 

Since GUIDs are, by definition, unique, GSTAR uses these as a naming primitive for flat routing 

within a GSTAR network.  Therefore, there is no need for name resolution when routing to and 

from the same GSTAR network, as all necessary information is propagated via the routing 

control plane. 

 

3. GSTAR Protocol 

 

MobilityFirst uses a two pronged approach for intra-domain routing that is capable of quickly 

responding to link quality changes for nearby nodes as well as remaining robust in the face of 

disconnectivity and partitioning. At a high level, individual routers maintain two types of 

topology information, one useful for responding to fine-grained changes to links and nodes 

within the router’s current partition, and one useful for responding to course-grain changes to 

connection probability for all nodes in the network. 

 

3.1 Protocol Overview 

 

GSTAR is fundamentally a link state protocol, with added DTN capabilities.  There are three 

types of control messages: (1) link probes, (2) flooded link state advertisements (F-LSA), and (3) 

epidemically disseminated link state advertisements (D-LSA).  Link probes allow nodes to obtain 

both time-sensitive ETT values for adjacent links as well as obtain a rough idea of the 



connectivity pattern of itself.  F-LSAs allow nodes within the same partition as an advertiser to 

obtain short term ETT, long term ETT, and storage availability information about the advertiser 

and its adjacent links.  D-LSAs allow all nodes, even those outside of an advertiser’s partition, to 

obtain general connectivity information about the advertiser. 

 

All nodes periodically probe for neighbors, making a note of which neighbors are currently 

available and what the ETT (directly computed) for the links are.  Over time, they average the 

ETT values for a single link and compute a “long term ETT” value.  All nodes in the partition 

periodically learn about the “current short term ETT”, “current long term ETT”, and “available 

storage” via periodically flooded F-LSA messages.  They also learn about general connectivity 

patterns for the entire network via D-LSA messages.  Therefore, two graphs are created: (1) the 

intra-partition graph, where vertices are nodes within the partition and edges have both a short 

and long term ETT values associated with them, and (2) the inter-partition graph where vertices 

are nodes in the network and edge weights are a metric indicating the frequency or likelihood 

of two nodes being in contact. 

 

When a PDU arrives or is sourced, the router first checks the intra-partition graph to see if the 

destination ID is a valid vertex.  If it is, it will solely use that graph to route the data.  In this 

case, it will obtain the shortest path with enough available space using a combination of the 

short term link ETTs and long term ETTs.  After obtaining a valid path, the router will then have 

to make a decision to forward to the next hop on that path, or store the data for later.  This is 

done using a three-dimensional metric including: (1) short term ETT over the path, (2) long term 

ETT over the path, (3) exponentially weighted view of storage availability over the path. 

 

If the destination ID is not found in the intra-partition graph, then the DTN graph is consulted, 

and the next hop is determined based on progress that can be made along that graph. 

 

3.2 Protocol Details 

 

In this subsection, we describe the details for both the control and data plane. 

 

3.2.1 Local Databases 

Each node holds and periodically updates the following information: 

1. List of current one-hop neighbors and the short-term and long-term link delays for each 

(referred to as the 1-hop neighbors).  It also holds the number of consecutive missed 

probe acknowledgements 

Single entry in database: 

Neighbor Short-term ETT Long-term ETT Last update time 



 

2. List of neighbors that occasionally respond to probes and a bitmap representing the 

amount of time the link is on and off (referred to as the DTN neighbors). 

Single entry in database: 

Neighbor 1 1 0 0 0 1 1 … 

 

3. Intra-partition database/graph built from flooded link state advertisements (F-LSAs) 

Single entry in database: 

Source GUID 

Sequence Number 

Last Update Time 

Current Disk Space Remaining 

Neighbor 1 Short-term ETT Long-term ETT 

Neighbor 2 Short-term ETT Long-term ETT 

… … … 

 

4. DTN database/graph built from epidemically disseminated link state advertisements (D-

LSAs) 

Single entry in database: 

Source GUID 

Sequence Number 

Average Disk Space Available 

Neighbor 1 Link Availability 

Neighbor 2 Link Availability 

… … 

 

5. Intra-partition Forwarding Table, built from running graph algorithms over the Intra-

partition graph. 

Dest. 1 Max Size 1 Next Hop SETT for path LETT for path Store/Forward Flag 

Dest. 1 Max Size 2 Next Hop SETT for path LETT for path Store/Forward Flag 

Dest. 1 … … … … … 

Dest. 2 Max Size 1 Next Hop SETT for path LETT for path Store/Forward Flag 

Dest. 2 … … … … … 

… … … … … … 

 

3.2.2 Control Plane – Proactive Message Dissemination 

 

Every node will broadcast a LPM every LP_PERIOD seconds, meant to be seen by its one-hop 

neighbors.  This probe contains a timestamp that will be to obtain the link delay, as well as the 

source GUID. 



 

LPM 

Source GUID 
Timestamp (ms) 

 

Each node receiving this broadcast must immediately respond with an LPM ACK. This is the only 

action taken by the receiving node; no local databases are updated.  The LPM ACK contains the 

original source GIUD as well as the responding node GUID.  Furthermore, it contains the same 

timestamp as the LPM it is acknowledging. 

 

LPM ACK 

Orig. Source GUID 
Responder GUID 
Timestamp (ms) 

 

Upon receiving an LPM ACK, the receiving node checks to see if it is the Orig. Source GUID in the 

message.  If not, it drops the message.  If so, it computes the link delay as (current time – 

timestamp) / 2.  It then updates its 1-hop neighbor database with that delay, and inserts a 1 

into the corresponding bitmap in the DTN neighbor database.  If a sent probe was not 

acknowledged by a neighbor already in the 1-hop neighbor database, then the number of 

missed probes field for that node is incremented.  If that number exceeds 

MAX_MISSED_PROBES, then the entry is deleted from the database.  If a sent probe was not 

acknowledged by a neighbor already in the DTN neighbor database, then a 0 is inserted into the 

corresponding bitmap. 

 

Note that if the router in question is serving end clients, then the router must automatically 

consider them neighbors and compute and store their link delay and DTN average availability 

without the use of link probes, since the end clients do not run GSTAR.  These end clients are 

then added to zero or more of the F-LSA and D-LSA messages that the router sends. 

 

Every node will flood an F-LSA every F_LSA_PERIOD seconds.  This will contain time-sensitive 

information about the node’s current 1-hop neighborhood and allows all nodes in the 

connected component to obtain fine-grained topology information.  Additionally, a flag is set if 

the node desires to be a gateway router.  If this flag is set, then the node is promising that it has 

sufficient connectivity to the rest of the Internet to ensure timely delivery of external packets.  

An F-LSA message size can vary, depending on how many 1-hop neighbors the source node has.  

Sequence numbers are added to determine age, and hence the Source GUID and Sequence 

Number together can uniquely identify an F-LSA.  

 



F-LSA 

Source GUID 
Sequence Number 
Gateway Flag 
Disk Space Remaining 
Neighbor 1 GUID 
Short-term ETT for 1 
Long-term ETT for 1 
Neighbor 2 GUID 
Short-term ETT for 2 
Long-term ETT for 2 
… 

 

When a node receives an F-LSA, it first checks to see if an entry exists in its Intra-Partition 

Graph containing the same Source GUID and a Sequence Number equal to or greater than the 

Sequence Number in the F-LSA.  If so, the message is silently dropped.  If not, it performs two 

tasks: (1) updates its local database and (2) rebroadcasts the F-LSA. 

 

First, the Intra-Partition Graph is edited for the Source GUID entry (or created if the entry does 

not exist).  All ETT fields are appropriately copied.  Next, the Sequence Number in the F-LSA is 

copied into the Sequence Number field in the entry, and the Disk Space field is copied over.  

Finally, the Last Update Time is set to the current local time.  After the database is updated, the 

node must then rebroadcast the received F-LSA.  This graph must periodically be aged, since the 

information contained in it is time-sensitive.  If the (current time - Last Update Time) is ever 

greater than MAX_IPGRAPH_LINK_TIME, the corresponding entry is deleted from the Intra-

Partition Graph. 

 

Every node will epidemically disseminate a D-LSA when necessary.  This need not be periodic, 

and instead should be sourced when a significant change occurs in the DTN neighbors.  D-LSA 

messages allow nodes to obtain course-grain topological information.  Sequence numbers are 

added to determine age, and hence the Source GUID and Sequence Number together can 

uniquely identify a D-LSA.  Average Disk Space Available is simply the expected disk space 

availability the node will have at some point in the future. 

 

 

D-LSA 

Source GUID 
Sequence Number 
Gateway Flag 
Average Disk Space Available 



DTN Neighbor 1 GUID 
Link Availability for 1 
Neighbor 2 GUID 
Link Availability for 2 
… 

 

For each entry in the DTN neighbors table, a bitmap exists corresponding to the time slots the 

link was available.  It is currently an active research question about how to best characterize 

that bitmap as a single metric.  For now, the following “average availability” metric can be used: 

 

AA = #1’s / (#1’s + #0s) 

 

Note that if only 0’s have been seen for an extended period of time, then the bitmap can be 

dropped and the DTN link is discarded. 

 

D-LSAs are disseminated using epidemic dissemination, and hence a copy the most recent 

unique (Source GUID, Sequence Number) D-LSAs for every node are stored at every node.  

These messages are synched using standard epidemic techniques.  To process a newly obtained 

D-LSA, the information from the message is simply copied into the DTN graph. 

 

3.2.3 Control Plane – Intra-Partition Path Selection and Forwarding Table Computation 

 

This subsection first describes a generalized storage-aware metric for ad-hoc networks that 

captures the end-to-end latency associated with transferring a large block through the network.  

This metric is then instantiated for use as a path selection metric in GSTAR.  Note that this is for 

the intra-partition graph only. 

 

Generalized Storage-Aware Metric 

 

The following are assumptions made: 

 

 Blocks are transferred in a hop-by-hop fashion 

 Routers have storage that they allow other nodes in the network to utilize 

 The network layer has access to some type of link quality information for the links 

adjacent to it 

 The network is generally connected; e.g., most of the time, instantaneous end-to-end 

paths exist 

 



As a block traverses a path, each node along the path will perform the following steps, each of 

which increases the total end-to-end latency of the block: 

 

1. Store the block until ready to send 

2. Attempt to gain access to the channel 

3. Transmit the block to the next node along the path 

 

Assume nodes along an arbitrary path are labeled 1,2,…,k where 1 is the source and k is the 

destination.  Let BACKi be the expected amount time a block will spend in storage at node i due 

to backpressure from the hop-by-hop transport. Let HOLDi be the expected amount time a 

block will spend in storage at node I due to a routing decision to store not related to forced 

backpressure. Let Pi be the probability that a routing decision to store (not due to backpressure) 

is made by node i. Let CHANi be the expected amount of time a block will wait while node i 

gains access to the channel to send the block. Let Ti be the expected amount of time a block will 

be in transit from node i to node i + 1. 

 

The total end-to-end latency for a block over a path is: 
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Storage time due to backpressure at node i will directly depend on the amount of data at node i 

with higher priority that the block in question that is also going to node i + 1, in addition to how 

long it takes for space to open at node i + 1. Making the simplifying assumption that blocks are 

served on a first-come first-serve basis: 
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where Di is the amount of data being held at node i due to backpressure, txi,i+1 is the 

transmission rate between node i and node i+1, and TWSi+1(Di) is the time node i waits on node 

i+1 to clear out Di space. 

 

The transmission time, Ti, is: 
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Practical Instantiation for GSTAR 

 

One approach taken by CNF is to hold data close to the source until the SETT path metric is 

reasonable in relation to the LETT path metric. The following simplifying assumptions to the 

model are for a particular path p: 

 

 Blocks are held at the source, and after they are released they will not be held (except 

for queuing due to backpressure) at any intermediate node. Therefore, Pi = 0 for 2 <= i 

<= k. 

 TWSi = 0 for 1 <= i <= k, which is a result of holding the block at the source until the path 

becomes of normal quality. 

 Channel access time is negligible, since block sizes are quite large. 

 All storage buffers in the network are large enough to handle any valid block size when empty. 

The current values of Di and txi,i+1 can be estimated by node i and transmitted to all other nodes 

via LSA flooding.  Furthermore, the source node can estimate P1 in the following way. P1 = 0 if 

the current SETT path metric is normal or low relative to the LETT path metric.  P1 = 1 if the 

current SETT path metric is high relative to the LETT path metric. Furthermore, HOLD1 is the 

average amount of time for that path that the SETT is relatively high.  This can be estimated by 

proactively keeping track of the following: given the SETT is high, on average how long does it 

take to become normal or low? 

 

With this information, a source node has everything needed to compute the delay metric for 

any given path.  This metric can be used to select the best path from numerous ones. This 

particular instantiation of the metric is therefore: 
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where Di and txi,i+1 are estimated from the received LSA message and TWSi = 0 for all i. 

 

At this point, a forwarding table can be generated for all GUIDs within the router’s intra-

partition graph. 

 

3.2.4 Control Plane – DTN Path Selection 

 



Path selection for the DTN graph is based on a simple Dijkstra computation over the received 

DLSA messages.  Specifically, the received DLSA messages allow a graph to be formed using 

GUIDs are vertices and a function of the average availability metric as weights. 

 

If the average availability between two GUIDs is AA, then the corresponding weight w on the 

graph feed into Dijkstra’s Algorithm is: 

 

01.01)(  AAAAw  

 

Note that the small constant (0.01) is added to all weights.  This allows Dijkstra’s Algorithm to 

favor paths with a shorter number of hops if the average availabilities in question are all 1. 

 

3.2.5 Data Plane 

 

PDUs have the following header format: 

 

Source GUID Destination GUID PDU Size Service ID 

 

There are two primary buffers that can be used by the router: (1) transit buffer and (2) hold 

store.  The transit buffer is a single priority queue, where PDUs coming into the router are 

placed in the appropriate slot in the transit buffer.  There are three primary priorities, as 

follows: 

1. PDU’s service ID indicates real-time data, and the PDU is small in size 

2. PDUs whose destination is found in the Intra-Partition Graph 

a. Further ordering is done based on (short-term ETT / long-term ETT) value for the 

PDU 

3. PDUs whose destination is found only in the DTN Graph 

 

When a PDU traverses through the transit buffer and is ready to be sent, GSTAR notes two 

properties of the PDU: (1) destination ID and (2) PDU size. 

 

If the destination is found in the intra-partition graph: 

The forwarding table entry corresponding to the PDU’s destination ID and size is consulted to 

obtain the next hop, SETT, and LETT.  If the SETT is high compared to the LETT, then the link is 

abnormally good, and hence immediate forwarding is desired.  If the LETT is high compared to 

the SETT, then the link is abnormally bad, and hence the PDU should be placed in the hold store 

instead of being transmitted.  It is important to note here that GSTAR assumes that there is no 



transport layer congestion control, such as TCP.  If there were, then the decision to store would 

be wrongfully viewed as congestion and data rates unnecessarily throttled. 

 

The decision to store or forward can be pictorially illustrated by the following graph, where the 

slope is simple set to 1.1 as an example. 

 

 

 

 

 

 

 

 

 

 

Therefore, the following algorithm indicates whether to store or forward: 

     If SETT > 1.1 x LETT then store 

    Else forward 

 

If the destination is found on the DTN graph: 

The weights of the DTN graph give information about the connectivity patterns in the network.  

The goal is to make progress along the DTN graph until the point when the destination node 

falls within the local partition.  The following approach can be taken to make progress: 

 

1. If replication is being used, then a set of disjoint paths are found via Djikstra’s Algorithm. 

2. The node transmits a replica to the next hop for each path according to the DTN graph.  

Note that the next hop may not be immediately available and the router may have to 

temporarily store the message. 

 
If the destination is not found on either graph, then node then the node must make a query to 
the GNRS to figure out which network the GUID is part of.  If the result of this query is that the 
GUID is not in the same network as the router in question, then the router must send the data 
unit to one of the GUIDs whose corresponding F-LSA (preferably) or D-LSA “gateway flag” was 
set.  If the result of the query is that the GUID is in the same network as the router in question, 
then the router must simply store the data unit and revisit it in the future. 
 

4. Simulation Details and Results 

 

LETT 

SETT 

Store 

Forward 

The slope can be set to a constant 

based on the environment, 



GSTAR, as well as hop-by-hop transport, has been implemented in the ns3 network simulator.  

This work is currently ongoing. 

 

5. Implementation Details and Experimental Results 

 

GSTAR, as well as low-level hop-by-hop transport, has been fully implemented in the CLICK 

software router and is currently running over the Orbit testbed.  For implementation details 

and experimental results, please see the corresponding “MobilityFirst Router Implementation” 

tech report. 

 

6. Extensions and Discussion 

 

There are many possible extensions that we plan to explore both in simulation and 

experimentation.  Two important ones are (1) a path storage metric for proactively controlling 

storage-based congestion, and (2) partial source routing in the DTN graph for loop mitigation. 

 

6.1 Path Storage Metric 

 

The path storage metric is a way of proactively controlling storage-based congestion.  The goal 

is to not immediately fill up the buffers close to popular destinations, but rather start to store 

messages before they cause congestion.  By keeping congestion-point buffers from getting too 

full, some storage will be more readily available for messages that have very high short-term 

ETT / long term ETT ratios, which should improve overall metrics. 

 

The goal is to compute the available storage over a path, with higher weights on closer nodes.  

If the metric is low compared to the size of the PDU being sent, then the router should consider 

storing the data when it may have otherwise forwarded it along.  If the number of hops was 

infinite, and the storage at the ith hop was S_i, then the path storage metric would be: 
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since the weights add to 1.  Consider a finite length path of h hops.  Then the PSM would be: 
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In order to use the path storage metric, it must be integrated in the decision to either store or 

forward.  The decision to store or forward can be pictorially illustrated by the following graph, 

where the slope is defined by: 

PDUSize

ricStorageMetPath
Slope
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In this case, if there is a lot of storage available, the slope will be relatively high, encouraging 

forwarding.  If the amount of storage is equal to the PDU size, and hence very constrained, the 

slope is 0.5, which heavily encourages storing. 

 

 

 

 

 

 

 

 

 

 

6.2 DTN Partial Source Routing 

 

In order to better prevent routing loops due to varying views of the DTN connectivity graph, 
one possible extension is the following.  When a node receives a message and the destination 
of that message is not found on the intra-partition graph, it normally consults the DTN graph 
and transmits to one or more neighbors of that graph.  It may be possible to instead, for each 
replication path, determine the furthest node on that path such that it is still within its intra-
partition graph and has enough available storage.  Replicas then can be transmitted to these 
nodes using the intra-partition graph technique, and then stored there until the appropriate 
next hop is met. 
 
Therefore, the DTN steps will be changed to the following.  The header will also be changed as 
follows: 
 

Source GUID Destination GUID PDU Size Service ID 

DTN Flag Intermediate GUID DTN Next GUID  

 
1. The top MAX_DTN_PATHS are computed using Djikstra’s algorithm in the following 

manner.  The shortest path is computed and the node furthest away on that path that is 

still within the partition and has adequate space is marked.  Furthermore, the node 1-

hop further than the marked node is noted as a “DTN next hop” node.  This node is then 
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Slope is dependent on computed value 



removed from the graph and the source path computation is redone, this time obtaining 

a new “furthest” node, which is marked.  This process is repeated until 

MAX_DTN_PATHS nodes are marked. 

2. A replica of the PDU is sent to each of the marked nodes, with the replica setting the 

Intermediate GUID to the GUID of the appropriate marked node.  Furthermore, the 

noted “DTN next hop” node is set in the DTN next GUID, and the DTN Flag is set.  These 

replicas can be sent using the Intra-Partition Graph.  After they are transmitted, the 

node can delete its local copy of the PDU. 

3. When the marked nodes each receive their corresponding replicas, they must do one of 

three actions: transmit the replica to the node set in the DTN next GUID field, store the 

replica until the DTN next GUID becomes available, or drop the replica.  This is to force 

the partition to be bridged and hence help mitigate routing loops. 

4. When the DTN next GUID receives the message, it can clear all intermediate fields and 
treat the PDU as normal.  Furthermore, it can flood a local acknowledgement to the 
partition it was in, causing the other replicas to be deleted.  This is similar in nature to 
BBN’s Endemic work. 

 


